About this item:

1,081 Views | 1,130 Downloads

Author Notes:

Correspondence: a.dehghan@erasmusmc.nl; a.dehghan@imperial.ac.uk.

For authors' contributions, please see the full article.

The authors thank the staff and participants of the ARIC study for their important contributions. We thank Mr. Michael Verbiest, Ms. Mila Jhamai, Ms. Sarah Higgins, Mr. Marijn Verkerk, and Lisette Stolk PhD for their help in creating the methylation database in the Rotterdam Study. The authors are grateful to the study participants, the staff from the Rotterdam Study, and the participating general practitioners and pharmacists. The authors appreciate technical assistance from Jodie L. Van de Rostyne, Pamela I. Hammond, Julie M. Cunningham, and the Mayo Clinic Advanced Genomics Technology Center. They also thank the families that participated in the GENOA study.

Competing interests: OHF works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA. Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review or approval of the manuscript.

For information about the availability of data and materials, please see the full article.

Subjects:

Research Funding:

The Atherosclerosis Risk in Communities (ARIC) study is carried out as a collaborative study supported by the National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). Funding support for “Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium” was provided by the National Institutes of Health (NIH) through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419).

For additional funding information, please see the full article.

Keywords:

  • Science & Technology
  • Life Sciences & Biomedicine
  • Biotechnology & Applied Microbiology
  • Genetics & Heredity
  • Inflammation
  • DNA methylation
  • Epigenome-wide association study
  • C-reactive protein
  • Body mass index
  • Diabetes
  • Coronary heart disease

DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases

Show all authors Show less authors

Tools:

Journal Title:

Genome Biology

Volume:

Volume 17, Number 1

Publisher:

, Pages 255-255

Type of Work:

Article | Final Publisher PDF

Abstract:

Background: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. Results: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10–7) in the discovery panel of European ancestry and replicated (P < 2.29 × 10–4) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10–5), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10–3), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10–5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. Conclusion: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.

Copyright information:

© 2016 The Author(s). The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote