Clarithromycin in GABA-related Hypersomnolence: A Randomized, Crossover Trial

Lynn Marie Trotti, MD, MSc, Prabhjyot Saini, MSc, Donald L. Bliwise, PhD, Amanda A. Freeman, PhD, Andrew Jenkins, PhD, and David B. Rye, MD, PhD

1Department of Neurology & Emory Sleep Center, Emory University School of Medicine
2Department of Anesthesia, Emory University School of Medicine

Abstract

Objective—Some central hypersomnolence syndromes are associated with a positive allosteric modulator of GABA-A receptors in cerebrospinal fluid. Negative allosteric modulators of GABA-A receptors, including clarithromycin, have been reported to reduce sleepiness in these patients. We sought to systematically assess the effects of clarithromycin on objective vigilance and subjective sleepiness.

Methods—This was a five-week, randomized, placebo-controlled, double-blind, crossover trial of clarithromycin 500 mg with breakfast and lunch, in patients with hypersomnolence syndromes (excluding narcolepsy with cataplexy) and evidence for abnormal cerebrospinal fluid potentiation of GABA-A receptors. The study occurred at a university-affiliated medical center. The primary outcome measure was median reaction time on the psychomotor vigilance task (PVT) at week 2 in each condition. Secondary outcomes included the Epworth Sleepiness Scale, Stanford Sleepiness Scale, Functional Outcomes of Sleep, Pittsburgh Sleep Quality Index, the SF-36, and additional PVT measures.

Results—Twenty-three patients began treatment. Three patients dropped out, and final analyses were performed on twenty complete cases. Median reaction time was not significantly different between clarithromycin and placebo. Subjective measures of sleepiness were significantly improved on clarithromycin versus placebo. Altered taste perception occurred, but was the only side effect more common on clarithromycin than placebo. No serious adverse events occurred.

*Corresponding Author: 1841 Clifton Rd Ne, Atlanta, GA 30329, Lbecke2@emory.edu, 404-728-4752 (phone), 404-712-8145 (fax).

Author Contributions
Dr. Trotti conceived of and designed the study, collected data, performed statistical analyses, and wrote the manuscript. Mr. Saini collected data, performed statistical analyses, wrote sections of the manuscript, and reviewed the manuscript for important intellectual content. Drs. Bliwise and Rye participated in the design of the study and reviewed the manuscript for important intellectual content. Drs. Freeman and Jenkins collected data and reviewed the manuscript for important intellectual content. All authors approved the submitted version of the manuscript.

Potential Conflicts of Interest
Dr. Trotti, Mr. Saini, and Dr. Freeman have no potential conflicts to report. Dr. Jenkins and Dr. Rye have a U.S. patent application (U.S. 20110028418A1) pending for the use of GABA-A receptor antagonists for the treatment of hypersomnia and other disorders of excessive sleepiness. Dr. Bliwise reports personal fees from New England Research Institute, Ferring Pharmaceuticals, Morehouse School of Medicine, Vantia Therapeutics, Merck, and Georgia Institute of Technology, outside the submitted work. Dr. Rye reports personal fees from Jazz Pharmaceuticals, UCB Pharma, and Xenospot Inc., outside the submitted work.
Interpretation—Subjective sleepiness, but not psychomotor vigilance, improved during a two-week course of clarithromycin. Although additional studies are needed, this suggests that clarithromycin may be a reasonable treatment option in patients with treatment-refractory hypersomnolence. This trial was registered at clinicaltrials.gov (NCT01146600) and supported by the American Sleep Medicine Foundation.

Introduction

The central nervous system (CNS) hypersomnias manifest as pathologic daytime sleepiness that persists despite sufficient sleep time and in the absence of nocturnal sleep pathology. They include disorders such as idiopathic hypersomnia and narcolepsy. They result in substantial morbidity and impaired quality of life. While there are FDA-approved treatments available for narcolepsy, no therapeutic agent has been approved for idiopathic hypersomnia. In patients with idiopathic hypersomnia, consensus opinion recommends the off-label use of wake-promoting medications such as modafinil, but these are frequently inadequate to control symptoms and clinical trial data are scarce. At the time this study was initiated, there were no published randomized, controlled trials evaluating any wake promoting medication for idiopathic hypersomnia, although two trials of modafinil including idiopathic hypersomnia patients have recently been published.

Recent work has demonstrated that many CNS hypersomnia patients have an endogenous, positive allosteric modulator of GABA-A receptors in their cerebrospinal fluid (CSF), which enhances inhibitory chloride currents when applied in combination with GABA in vitro. This effect is seen in patients with a variety of CNS hypersomnia syndromes, including those with narcolepsy without cataplexy, those with idiopathic hypersomnia with or without long sleep time, and those with reported sleepiness despite long habitual sleep times and normal diagnostic testing (i.e, Multiple Sleep Latency Test, MSLT). Because this abnormality is seen across several different hypersomnia diagnoses, we classify patients as having “GABA-related hypersomnia” if they are diagnosed with a CNS hypersomnia syndrome and demonstrate the presence of this CSF biomarker. Negative allosteric modulators of the GABA-A receptor, such as flumazenil, reverse the effect of this endogenous modulation in vitro and may improve vigilance in vivo. The macrolide antibiotic clarithromycin also exhibits negative allosteric modulation of GABA-A receptors in vitro and the majority of patients with GABA-related hypersomnia demonstrate improved subjective sleepiness on clarithromycin in clinical practice. The current trial systematically evaluated for objective and subjective improvements in sleepiness using clarithromycin in patients with GABA-related hypersomnia. We also sought to determine the safety and tolerability of a two week course of clarithromycin in this clinical population.

Methods

This was a randomized, double-blind, placebo-controlled, crossover study conducted at a single site, the Emory Sleep Center in Atlanta, Georgia. The majority of subjects were recruited from the Emory patient population. The study was registered at clinicaltrials.gov (NCT01146600), and potential subjects who contacted us based on this registration information were also eligible for participation if they met the inclusion/exclusion criteria.
All patients carried diagnoses of GABA-related hypersomnia, defined as the presence of both: 1) abnormal potentiation of GABA-A receptors on an in vitro assay of their spinal fluid, defined as 55% or greater; and 2) a clinical diagnosis of a hypersomnia syndrome. Because idiopathic hypersomnia and narcolepsy without cataplexy can only be objectively differentiated based on number of sleep onset REM periods, we included both patients with idiopathic hypersomnia and patients with narcolepsy without cataplexy. In light of the known role of hypocretin loss in patients with narcolepsy with cataplexy, patients with cataplexy or abnormal hypocretin values were excluded. Idiopathic hypersomnia and narcolepsy without cataplexy were defined following International Classification of Sleep Disorders, 2nd edition (ICSD-2) criteria. The ICSD-2 cutoff of a mean sleep latency of < 8 minutes has been shown to exclude a substantial proportion of patients who otherwise meet clinical criteria for a hypersomnolence syndrome. Therefore, we also prespecified inclusion of patients with hypersomnia symptoms and habitually long sleep times (greater than 70 hours per week) who met clinical but not Multiple Sleep Latency Test criteria for an ICSD-2 hypersomnia syndrome. This latter group of subjects was referred to as having a diagnosis of “subjective hypersomnia” (similar to ref17). Those subjects taking wake-promoting medications at the time of enrollment (n = 14) were allowed to continue on these medications for the duration of the study. Enrollment required stable dosing of any wake-promoting medications for at least 30 days prior to enrollment and throughout the five week study period.

Subjects had to be age 18 or older. Subjects could not have contraindications to clarithromycin use (i.e., medical conditions or medications with severe drug interactions; see supplemental table 1 for full list). Subjects could not have moderate or severe sleep apnea, severe periodic limb movement disorder with arousals, metabolic disorders thought to explain their hypersomnia symptoms, hypocretin deficiency, or cataplexy. The presence of a circadian rhythm disorder, e.g., delayed sleep phase syndrome, was not an exclusion as long as the circadian disorder did not better explain sleepiness than did the diagnosed hypersomnolence disorder (e.g., a patient with insufficient sleep time related to a circadian rhythm disorder would be excluded, but a patient with a delayed sleep phase but sufficient duration of sleep could be included). Although not explicitly pre-specified in inclusion/exclusion criteria, we chose to exclude subjects for the following additional reasons: chronic use of clarithromycin and unwilling to discontinue for study purposes, chronic use of flumazenil (another negative allosteric modulator of the GABA-A receptor), and living out of town at a distance that would make weekly study visits impractical.

Eligible subjects were enrolled in a two-treatment, two-period (AB/BA) crossover trial comparing the effects of clarithromycin and matched placebo. The study consisted of five visits across five weeks, with each visit occurring at the same time on the same day of the week for a given subject (Figure 1). The first visit was a screening visit at which baseline measurements were collected. The subject then took a study drug (clarithromycin or placebo) twice daily for two weeks, with a study visit after each week on therapy. Following a one week washout period, during which subjects took no study medication, each subject then took the other study drug for two weeks. A one week washout was chosen: 1) to ensure ample time for the active drug, which has up to a 7 hour half-life in patients with normal renal function, to wash out; and 2) to ensure all study visits were on the same day of the

Ann Neurol. Author manuscript; available in PMC 2016 September 01.
week for each individual patient, to limit any variability in sleepiness severity related to the individual’s weekly schedule. Clarithromycin was dosed as 500 mg taken with breakfast and 500 mg with lunch. Placebo tablets were matched in appearance and dosing schedule.

The pre-specified primary outcome was change in median reaction time on the psychomotor vigilance task (PVT) at week two on each intervention. The psychomotor vigilance task is a ten minute, simple reaction task that requires subjects to rapidly press a button in response to a visual stimulus. Pre-specified secondary outcome measures were: 1) median reaction times at week 1; 2) PVT lapses, i.e., response times greater than 500 msec following presentation of a stimulus, at week 1 and week 2; 3) scores on the Epworth Sleepiness Scale, a widely used measure of subjective tendency to doze during the day, at week 1 and 2; 4) Functional Outcomes of Sleep Questionnaire scores, a measure of the impact of sleepiness on daily activities, at week 1 and 2; 5) the SF-36 questionnaire, a measure of both physical and emotional health outcomes, at week 1 and 2; 6) the Stanford Sleepiness Scale, a measure of momentary level of sleepiness, at week 1 and 2; 7) the Pittsburgh Sleep Quality Index scores at weeks 1 & 2, scored using the database available at sleep.pitt.edu; and 8) subject-reported adverse events. Following the finalization of the protocol, work by Basner et al suggested that the reciprocal of reaction time (RRT) measure on the PVT was superior to median reaction time in detecting the effects of sleep deprivation, so we included RRT as an exploratory outcome. Because of preliminary data suggesting substantial test-retest variability of PVT scores in our hypersomnia patients, we performed two PVT assessments at each study visit, separated by at least 30 minutes, which were averaged for each visit. Questionnaires were administered once at each study visit.

Research pharmacists dispensed all study medications (active and placebo) according to a computer generated randomization list, with 1:1 randomization in blocks of four. The allocation sequence generated by pharmacy staff was not shared with study investigators, who enrolled patients. Subjects were randomized such that an equal number received each intervention first (i.e., 10 received clarithromycin first, 10 received placebo first, with pharmacy staff maintaining this overall ratio despite drop outs). Identity of medication (clarithromycin versus placebo) was concealed by the pharmacy, using matched pills and labeled pill containers generated for each subject that were identical in appearance for placebo and clarithromycin weeks (other than sequential dates). Pharmacists and pharmacy staff were located in a separate building and had no interaction with subjects; medication was transferred from pharmacy to study staff via courier. All study investigators and study staff, as well as all subjects, remained blinded to randomization strategy, block size, and treatment allocation until study completion. All subjects gave informed consent and this study was approved by the Emory Institutional Review Board.

Statistical analysis

Sample size was determined using PVT data from six hypersomnolent patients before and after open label use of clarithromycin. Based on these data, 20 subjects completing the trial would provide 85% power to detect a 25 msec difference in median PVT reaction time between treatment arms, with alpha set at 0.05. There were no interim analyses or stopping guidelines.
To obtain the best estimate of the effect of clarithromycin in a crossover design, we pre-
specified a complete case analysis, including only those subjects who completed
assessments on both interventions and continuing enrollment until our complete-case sample
size of 20 was reached. Those 20 subjects who completed assessments during both periods
were then analyzed even in cases where subjects did not take all pills as prescribed during
each intervention period. In the case of missing data points (SSS x 1 visit in one case, PSQI
x 1 visit in one case), the other, available data point for that subject was used in lieu of the
period average.

Prior to performing testing of the outcome measures, we evaluated for the presence of
carryover and period effects. Carryover was assessed separately for each outcome, both for
carryover of average scores from week 1 and week 2 between treatments and for scores at
the end of week 2 and the beginning of week 4. Carryover was evaluated with unpaired t-
tests comparing sum of the score for the two periods between those who started on
clarithromycin and those who started on placebo.26 A carryover effect is demonstrated if the
summed values are different between the two treatment groups (i.e., clarithromycin first and
placebo first). Period effect was assessed separately for each outcome using average scores
from weeks 1 and 2, via an unpaired t-test comparing the difference of score and score
multiplied by a factor of −1. Evidence for a period effect would be indicated by a significant
difference in the scores between these two groups.

For evaluation of treatment effects, we first compared scores on each outcome during week
1 on clarithromycin versus week 2 on clarithromycin using a paired t-test. For those
secondary outcomes that were not different between week 1 and week 2, we collapsed
across both weeks for subsequent testing. For those measures different between week 1 and
week 2, individual weeks were evaluated separately.

Treatment effects were assessed using analysis of variance, via a mixed model with fixed
effects for treatment (two treatment conditions), period, and sequence (the treatment by
period interaction). In all models, random effects included subjects nested within sequence
as a sampling cluster.27 The models were fitted using the restricted maximum likelihood
estimation (REML) to obtain the best fitting variance-covariance matrix. The Kenward-
Roger method was implemented to adjust the REML estimator of the standard error and
degrees of freedom.28, 29 The assumptions of the analysis of variance were verified with the
Shapiro-Wilk test of normality,30 Hartley’s maximal F test,31 and visual inspection of the
residuals.

Post-hoc comparisons were performed on several subgroups of patients for each outcome
that showed a significant effect of clarithromycin in the group as a whole. These subgroup
comparisons included: subjects who were on versus off of other wake-promoting
medications during the study; subjects who were on versus off of modafinil or armodafinil
during the study; subjects who were on versus off of antidepressants for comorbid
psychiatric disease; and subjects who had versus had not previously taken clarithromycin.
The difference between each outcome measure on placebo and clarithromycin was
calculated, and compared between the two groups using t-test (corrected for unequal
variances when necessary). A post-hoc assessment for effects of clarithromycin on sleep
length was performed comparing question 4 of the PSQI (“during the past week, how many hours of actual sleep did you get at night”) at baseline, on clarithromycin, and on placebo using a repeated measures ANOVA. Post-hoc comparisons were also made by diagnostic category. For baseline characteristics, diagnostic groups were compared using Welch ANOVA on ranked data or Fisher exact test, as appropriate. For treatment response, in those variables significant for the group as a whole, the above mixed model was used, with the addition of a diagnosis term and removal of the period term (necessary for model to reach convergence). All tests were two-sided with significance set at p < 0.05. Data management and analyses were performed using Microsoft Excel 2010 (Redmond, WA) and SAS, version 9.3 (Cary, NC).

Results

Twenty subjects were randomized, completed both treatment periods, and were analyzed for primary and secondary outcomes (see Figure 2). There were 15 women, mean age 33.0 years (SD 13.3). Three subjects had comorbid diagnoses of circadian rhythm disorders (two of delayed sleep phase and one of irregular sleep-wake), but sleepiness in these three subjects persisted after obtaining sufficient habitual sleep time despite the circadian abnormality. Owl-Lark questionnaires were available for 16 of 20 subjects, and demonstrated one subject with a definite evening type, 5 subjects with moderate evening type, one subject with moderate morning type, and the remainder of neither type. In the group as a whole, average bedtime during the baseline week (based on question 1 of the PSQI) was 11:14 pm (range 9:00 pm until 1:00 am). Prior to enrollment in the study, patients had previously tried an average of 2.5 wake-promoting medications (range 1–5, SD 1.2) across an average of 2.3 medication classes (range 1–4, SD 1.0) for treatment of their hypersomnolence. Only three of twenty subjects endorsed reasonable symptom control with prior wake-promoting medications; the remainder (85%) had not found satisfactory control of their symptoms with available medications. There were no significant differences in baseline characteristics by diagnosis category (except MSLT results, by definition; see Table 3). Four subjects were treated with antidepressant medications for comorbid psychiatric disease (one of whom had symptomatic hypersomnia; the remaining three all had abnormally short mean sleep latencies on their MSLTs).

Three additional eligible patients were randomized but not included in complete-case analyses because they dropped out during the first intervention period (two for side effects and one for unrelated financial concerns). Subjects who completed all five assessment visits were included in the complete-case analysis, even if they did not take all study medication as prescribed (e.g., in the case of a subject who missed several days of placebo because of GI side effects). The first subject was recruited 3/15/11 and the final subject completed the final study visit 9/28/12, ending the trial at the planned completion point of twenty subjects completing both intervention periods. Baseline characteristics of the included subjects are shown in Table 1. Unpaired t-tests for carryover were non-significant for all outcome measures (all p-values > 0.05). There was no evidence of a period effect on any outcome measure (all p-values > 0.05). For all outcomes other than scores on the Stanford Sleepiness Scale, there was no significant difference between scores during week 1 of clarithromycin
and week 2 of clarithromycin (all p-values > 0.05). Stanford scores were significantly better during week 1 of clarithromycin (2.55 versus 3.15, p = 0.04).

The primary outcome measure, median reaction time on the psychomotor vigilance task (PVT), was no different between week 2 on clarithromycin and week 2 on placebo (279.1 +/- 77.3 on clarithromycin versus 311.6 +/- 114.1 on placebo, t = -1.47, p = 0.16, see Table 2 and Figure 3a). Other tested PVT measures were also not significantly different between groups (see Table 2). In contrast, subjective measures of sleepiness were significantly improved during treatment with clarithromycin. The Epworth Sleepiness Scale was four points lower on clarithromycin than placebo (10.1 +/- 5.4 versus 14.1 +/- 3.7, t = -4.99, p < 0.0001, Figure 3b). Functional Outcomes of Sleep Questionnaire scores significantly improved on clarithromycin (16.6 +/- 2.4 versus 14.4 +/- 2.7, t = 3.77, p = 0.01, Figure 3c). The SF-36 energy subsection was significantly improved on clarithromycin (48.9 +/- 26.9 versus 28.0 +/- 22.5, t = 3.93, p = 0.001, Figure 3d), as were several other subscales (Table 2). Stanford Sleepiness Scale scores were significantly lower on clarithromycin than placebo during week 1 (2.6 +/- 1.3 versus 4.3 +/- 1.6, t = -4.90, p = 0.0001) but not week 2 (3.2 +/- 1.6 versus 3.6 +/- 1.4, t = -1.30, p = 0.21).

Comparing those subjects who remained on wake-promoting medications (n = 14) during the trial to those not on wake-promoting medications (n = 6), there was no non-significant trend toward greater improvement on the FOSQ in those not taking other wake promoting medications (FOSQ 3.8 points higher on clarithromycin than placebo for those not on other medications versus 1.6 points higher for those on other medications, p = 0.09). There were no significant differences between these two groups on the other measures (all p-values > 0.05 for ESS, SSS, and SF-36 energy, role physical, social, and general subscales). Considering only modafinil and armodafinil, there were no significant differences in treatment effect between those on these medications (n = 5) and those not (n = 15) during the trial (all p-values > 0.05). There were no significant differences of the effect of clarithromycin in those subjects who were (n = 4) or were not (n = 16) taking an antidepressant for comorbid psychiatric disease during the trial (all p-values > 0.05). There were no significant differences of the effect of clarithromycin in those subjects who had (n = 11) or had not (n = 9) had prior exposure to clarithromycin (all p-values > 0.05). Sleep length was not significantly different by condition (7.8 hours at baseline, 7.0 hours on clarithromycin, and 7.4 hours on placebo, p = 0.39). There were no significant differences in treatment effect by diagnosis (Table 3).

No serious adverse events occurred during the trial. Two patients dropped out of the study because of adverse events during clarithromycin treatment. Minor adverse events were common in both treatment periods (reported by 21 of 22 participants while taking clarithromycin and 15 of 20 participants while taking placebo, Fisher’s test p = 0.09; see Table 4). Of the reported events, only alterations in taste and/or smell was more common with clarithromycin than placebo (15/22 subjects on clarithromycin vs 0/20 subjects on placebo, Fisher’s test p = 0.0001).
Discussion

This pilot, randomized, double-blind, placebo controlled trial did not demonstrate a
significant improvement in psychomotor vigilance in hypersomnolent subjects on 500 mg of
clarithromycin twice daily (with breakfast and lunch). In contrast, clarithromycin
consistently improved subjective measures of sleepiness. The benefit observed is large
enough to be clinically meaningful, and is of the same magnitude or higher than that
reported with modafinil in narcolepsy and shiftwork trials (i.e., a decrease in of 4 points on
ESS with clarithromycin versus 2.4–4.1 with modafinil, increase in FOSQ of 2.2 points on
clarithromycin versus 0.7 points with modafinil, increase in SF-36 energy subscale of 20.9
points with clarithromycin versus 9.5–10 points with modafinil). 33–37

This study was placebo-controlled and double blinded. However, dysgeusia or dysosmia was
noted in two thirds of our subjects while on clarithromycin, which may have resulted in
some inadvertent un-blinding and placebo effect. Another limitation was the drop-out rate
(14%). Our decision to perform a complete case analysis does limit the intention-to-treat
principle, although this was preserved to the extent possible (i.e., patients were analyzed as
randomized if they attended all follow up appointments, even if they did not take the
medication as prescribed). Although drop outs are undeniably a limitation of crossover
trials, others have argued that complete-case analyses at least allow assessment of effect in
the subgroup of patients who are able to tolerate the medication, 38 which might be
particularly relevant with this medication. Post-hoc analyses in this study should be
interpreted with caution, especially in light of the small sample size in some groups.

Our study population was recruited predominantly through our tertiary referral Sleep Center,
and as such may not be fully representative of hypersomnolent patients in general. In
particular, eighty-five percent of our patients had failed to find an adequate medication
regimen to control their symptoms prior to enrollment, despite having tried multiple other
classes of wake-promoting medications. Seventy percent of our subjects had persistent
sleepiness despite the wake-promoting medications they were on at the time of enrollment
(and remained on throughout the trial). Continuation of wake-promoting medications during
our trial may have decreased our ability to detect a benefit of clarithromycin (by partially
treating sleepiness), as suggested by the trend to greater improvement on FOSQ in those not
on other medications. We focused on subjective measures of sleepiness and objectively
measured vigilance. The central disorders of hypersomnolence encompass other important
symptomatology, including sleep inertia and long sleep times in many patients, which
require evaluation in future treatment studies. When clarithromycin is used for indications
other than hypersomnolence, some children appear to develop hypersomnia 39. Our post hoc
evaluation of sleep time in this study of adults did not demonstrate increased nocturnal sleep
time, suggesting that the disparate effects of clarithromycin in our study and that reported by
Baranowski might reflect differences in age or indication for use in the two groups.

Our two week treatment period was not long enough to comprehensively assess for possible
wearing off of medication effectiveness over time, which we and others have reported may
be problematic in some hypersomnia patients treated with clarithromycin.12,40 The
difference between weeks 1 and 2 on SSS might suggest the development of tolerance,
although this was not seen in any other measure. Clarithromycin was relatively well tolerated in this study. However, the duration was too short to assess for potential long term complications of antibiotic use, including antibiotic resistance and superinfection. Clearly, the long term use of an antibiotic must be justified by clinical benefit that exceeds these potential risks, as we have elaborated elsewhere.\cite{12}

It is attractive to postulate that the benefits of clarithromycin seen in this study are mediated by clarithromycin’s action as a negative allosteric modulator of GABA-A receptors. However, at present the mechanism behind improved sleepiness with clarithromycin is unknown. It might be mediated by anti-inflammatory effects of clarithromycin. For example, clarithromycin decreases plasma interleukin-6 levels\cite{41} and this cytokine has been implicated as a potential cause of excessive daytime sleepiness and a component of the homeostatic regulation of sleep.\cite{42} Alternatively, recent work has highlighted the potential role of the gastrointestinal microbiome in the expression of neuropsychiatric conditions,\cite{43} and it could be speculated that clarithromycin affects sleepiness through an alteration in gut flora composition. Even a short, 7–10 day course of clarithromycin at the dose used in our study results in measurable changes in the composition of the gastrointestinal microbiome.\cite{44,45} We were not able to directly assess for changes in cytokines or gut flora in the present study. Clarithromycin is a strong inhibitor of the cytochrome P450 CYP3A4 enzyme, and both modafinil and armodafinil are partially metabolized by this enzyme.\cite{46-48} Therefore, clarithromycin might have part of its effect by decreasing metabolism of modafinil and armodafinil. This is, however, unlikely to explain the majority of the treatment benefit produced by clarithromycin in this study, given that a similar benefit was seen in patients not taking these medications, and because patients taking these medications had already found them to be ineffective in controlling their sleepiness. Future studies of clarithromycin, potentially including patients with sleepiness from known causes such as hypocretin-deficient narcolepsy or experimental sleep deprivation, would be useful in differentiating the extent to which the benefit observed in this study was mediated through a GABA-ergic mechanism.

This preliminary study suggests that there is a subjective treatment benefit from clarithromycin for idiopathic hypersomnia, narcolepsy without cataplexy, and subjective hypersomnia, consistent with the benefit previously reported in clinical practice.\cite{12} Larger studies that include additional objective measures of sleepiness (such as the maintenance of wakefulness test) and longer treatment duration are needed. In the interim, clarithromycin might be considered, especially in cases that are otherwise treatment-refractory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research project was made possible by a grant from the American Sleep Medicine Foundation, a foundation of the American Academy of Sleep Medicine. The funder specified that the work must be published in abstract form at its completion,\cite{49} but had no role in study design, data collection, data analysis, decision to publish in manuscript form, or preparation of the manuscript. Statistical consultation was provided through a program supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number
We gratefully acknowledge the assistance of: Amy Stout, PhD, with subject recruitment and data collection; the Emory Investigational Drug Service for the preparation and dispensing of matched clarithromycin and placebo tablets and for development and maintenance of blinding of the randomization table; and Dr. Paul Garcia for discussions regarding clarithromycin mechanisms of action. We also express our appreciation for hypocretin measurements performed by Drs. Emmanuel Mignot (Stanford Center for Sleep Sciences and Medicine), Joan Santamaria, and Alex Iranzo (Neurology Service, Hospital Clinic of Barcelona).

References

25. Urbaniak, GC.; Plous, S. Research Randomizer (Version 4.0) [Computer software].

Ann Neurol. Author manuscript; available in PMC 2016 September 01.

Figure 1. Study protocol
Subjects were randomized to order of presentation of clarithromycin (vertical lines) and placebo (checkerboard).
Figure 2.
Flow diagram of study participants
Figure 3. Clarithromycin versus placebo
All panels are boxplots demonstrating individual subject values while taking clarithromycin or placebo. Subjects randomized to clarithromycin first are indicated by pluses and those randomized to placebo first are indicated by open circles. Mean values are indicated by filled triangle and baseline values are indicated by the horizontal dashed line. Median values are indicated by the solid horizontal line inside the box, and the 25th and 75th percentiles are indicated by the upper and lower edges of the box. For median reaction time (A) and Epworth sleepiness scale (B), lower values indicate less impairment of vigilance/less sleepiness. For Functional Outcomes of Sleep (C) and SF-36 Energy (D), higher values indicate less severe impact of symptoms.
Table 1
Baseline characteristics by treatment allocation

<table>
<thead>
<tr>
<th></th>
<th>Placebo first, then clarithromycin</th>
<th>Clarithromycin first, then placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in years)</td>
<td>34.7 (14.5)</td>
<td>31.2 (12.5)</td>
</tr>
<tr>
<td>Female gender</td>
<td>8 (80%)</td>
<td>7 (70%)</td>
</tr>
</tbody>
</table>
| Hypersomnia diagnoses | Idiopathic hypersomnia with long sleep time: 3
Narcolepsy without cataplexy: 3
Subjective hypersomnia: 3
Idiopathic hypersomnia without long sleep time: 2
Narcolepsy without cataplexy: 1
Subjective hypersomnia: 3 |
| In vitro potentiation of GABA-A receptor function by subject cerebrospinal fluid | 80.9% (19.0) | 86.2% (25.7) |
| Cerebrospinal fluid hypocretin level (pg/ml) | 273.3 (61.4) | 313.1 (88.3)* |
| % on wake-promoting medications | 6 (60%, including dextroamphetamine, modafinil, bupropion, and protriptyline) | 8 (80%, including dextroamphetamine, dextroamphetamine-amphetamine, modafinil, and armodafinil) |
| PVT median reaction time | 383.6 (409.5) | 284.1 (49.6) |
| Epworth Sleepiness Scale | 15.3 (1.6) | 14.8 (3.0) |
| Multiple Sleep Latency Test, mean sleep latency | 6.0 (3.0) | 7.3 (5.1) |
| Multiple Sleep Latency Test, number of sleep onset REM periods | 1.2 (1.5) | 0.8 (1.0) |
| Respiratory disturbance index | 4.5 (4.1) | 2.0 (3.5) |
| Periodic limb movement arousal index | 0.8 (1.3) | 4.2 (7.5) |

Values represent mean (standard deviation) for continuous variables, and number (percentage) for categorical variables. Median values are shown in Supplemental Table 2.

* n = 9.

Abbreviations: PVT = psychomotor vigilance task; REM = rapid eye movement.
<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Placebo</th>
<th>Clarithromycin</th>
<th>Estimate</th>
<th>95% CI</th>
<th>t-value*</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCHOMOTOR VIGILANCE TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-median RT week 2</td>
<td>333.8 (291.4)</td>
<td>311.6 (114.1)</td>
<td>279.1 (77.3)</td>
<td>-32.6</td>
<td>-79.2, 14.0</td>
<td>-1.47</td>
<td>0.16</td>
</tr>
<tr>
<td>-median RT week 1</td>
<td>333.8 (291.4)</td>
<td>308.4 (120.6)</td>
<td>285.4 (71.3)</td>
<td>-23.0</td>
<td>-15.9, -62.0</td>
<td>-1.24</td>
<td>0.23</td>
</tr>
<tr>
<td>-lapses**</td>
<td>6.5 (16.9)</td>
<td>10.3 (18.7)</td>
<td>5.7 (11.3)</td>
<td>-4.6</td>
<td>-11.3, 2.0</td>
<td>-1.46</td>
<td>0.16</td>
</tr>
<tr>
<td>-RRT</td>
<td>3.6 (0.9)</td>
<td>3.5 (0.8)</td>
<td>3.7 (0.7)</td>
<td>0.2</td>
<td>-0.03, 0.4</td>
<td>1.79</td>
<td>0.09</td>
</tr>
<tr>
<td>QUESTIONNAIRES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ESS</td>
<td>15.0 (2.3)</td>
<td>14.1 (3.7)</td>
<td>10.1 (5.4)</td>
<td>-3.9</td>
<td>-5.6, -2.3</td>
<td>-4.99</td>
<td><0.0001</td>
</tr>
<tr>
<td>-FOSQ</td>
<td>13.9 (2.0)</td>
<td>14.4 (2.7)</td>
<td>16.6 (2.4)</td>
<td>2.2</td>
<td>1.0, 3.5</td>
<td>3.77</td>
<td>0.001</td>
</tr>
<tr>
<td>-SF-36: physical</td>
<td>84.0 (15.1)</td>
<td>82.8 (18.8)</td>
<td>87.5 (16.8)</td>
<td>4.7</td>
<td>-2.2, 11.5</td>
<td>1.43</td>
<td>0.17</td>
</tr>
<tr>
<td>-SF-36: role physical</td>
<td>40.0 (38.4)</td>
<td>39.7 (44.2)</td>
<td>65.6 (40.5)</td>
<td>25.9</td>
<td>6.7, 45.1</td>
<td>2.84</td>
<td>0.01</td>
</tr>
<tr>
<td>-SF-36: role emotional</td>
<td>78.3 (31.1)</td>
<td>73.3 (35.2)</td>
<td>84.2 (24.5)</td>
<td>10.8</td>
<td>-8.7, 30.4</td>
<td>1.16</td>
<td>0.26</td>
</tr>
<tr>
<td>-SF-36: energy</td>
<td>25.0 (21.6)</td>
<td>28.0 (22.5)</td>
<td>48.9 (26.9)</td>
<td>20.9</td>
<td>9.7, 32.1</td>
<td>3.93</td>
<td>0.001</td>
</tr>
<tr>
<td>-SF-36: emotional</td>
<td>72.0 (15.2)</td>
<td>72.0 (19.2)</td>
<td>73.5 (18.5)</td>
<td>2.4</td>
<td>-3.5, 6.5</td>
<td>0.63</td>
<td>0.54</td>
</tr>
<tr>
<td>-SF-36: social</td>
<td>60.6 (27.6)</td>
<td>65.3 (24.7)</td>
<td>79.4 (23.0)</td>
<td>14.1</td>
<td>5.7, 22.5</td>
<td>3.51</td>
<td>0.003</td>
</tr>
<tr>
<td>-SF-36: pain</td>
<td>82.8 (20.2)</td>
<td>80.8 (18.8)</td>
<td>85.3 (18.6)</td>
<td>4.5</td>
<td>-3.0, 12.0</td>
<td>1.26</td>
<td>0.22</td>
</tr>
<tr>
<td>-SF-36: general</td>
<td>64.1 (19.1)</td>
<td>62.4 (19.0)</td>
<td>66.8 (18.4)</td>
<td>4.5</td>
<td>0.1, 8.9</td>
<td>2.14</td>
<td>0.046</td>
</tr>
<tr>
<td>-SSS week 1</td>
<td>4.3 (1.3)</td>
<td>4.3 (1.6)</td>
<td>2.6 (1.3)</td>
<td>-1.7</td>
<td>-2.4, -1.0</td>
<td>-4.90</td>
<td>0.0001</td>
</tr>
<tr>
<td>-SSS week 2</td>
<td>4.3 (1.3)</td>
<td>3.6 (1.4)</td>
<td>3.2 (1.6)</td>
<td>-0.5</td>
<td>-1.3, 0.3</td>
<td>-1.30</td>
<td>0.21</td>
</tr>
<tr>
<td>-PSQI</td>
<td>6.7 (3.5)</td>
<td>6.3 (2.8)</td>
<td>5.8 (3.9)</td>
<td>-0.5</td>
<td>-1.6, 0.6</td>
<td>-0.92</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Values reflect mean (standard deviation). Median values are shown in Supplemental Table 3. Results in bold are significant at p < 0.05.

* t-value reflects the model comparing clarithromycin and placebo treatments, as specified in the text.

** Except as specified for median RT and SSS, all other measures were calculated for the average of week 1 and week 2 results on each treatment.

Abbreviations: RT = reaction time; RRT = reciprocal of the reaction time; ESS = Epworth Sleepiness Scale; FOSQ = Functional Outcomes of Sleep Questionnaire; SSS = Stanford Sleepiness Scale; PSQI = Pittsburgh Sleep Quality Index.
Table 3

Baseline characteristics and treatment response by diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Narcolepsy without cataplexy (n = 4)</th>
<th>Idiopathic hypersomnia with long sleep (n = 5)</th>
<th>Idiopathic hypersomnia without long sleep (n = 5)</th>
<th>Subjective hypersomnia (n = 6)</th>
<th>F-value</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (in years)</td>
<td>29.8 (8.1)</td>
<td>32.0 (7.5)</td>
<td>39.4 (20.4)</td>
<td>30.5 (14.0)</td>
<td>0.25</td>
<td>0.86</td>
</tr>
<tr>
<td>Female gender</td>
<td>2 (50%)</td>
<td>5 (100%)</td>
<td>3 (60%)</td>
<td>5 (83%)</td>
<td>--</td>
<td>0.31</td>
</tr>
<tr>
<td>Bedtime at baseline, from PSQI</td>
<td>11:30 (65 min)</td>
<td>10:12 (44 min)</td>
<td>11:36 (68 min)</td>
<td>11:35 (29 min)</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>In vitro potentiation of GABA-A receptor function by subject cerebrospinal fluid</td>
<td>88.7 (20.1)</td>
<td>86.7 (21.4)</td>
<td>81.4 (21.8)</td>
<td>79.3 (28.7)</td>
<td>0.3</td>
<td>0.83</td>
</tr>
<tr>
<td>Cerebrospinal fluid hypocretin level (pg/ml)</td>
<td>331.8 (68.7)</td>
<td>269.0 (97.7)</td>
<td>324.8 (96.6)</td>
<td>263.3 (32.1)</td>
<td>1.2</td>
<td>0.38</td>
</tr>
<tr>
<td>% on wake-promoting medications</td>
<td>3 (75%)</td>
<td>2 (40%)</td>
<td>4 (80%)</td>
<td>5 (83%)</td>
<td>--</td>
<td>0.54</td>
</tr>
<tr>
<td>Number of wake-promoting medications previously attempted</td>
<td>2.0 (0.8)</td>
<td>2.0 (0.7)</td>
<td>2.2 (1.6)</td>
<td>3.3 (1.0)</td>
<td>2.14</td>
<td>0.17</td>
</tr>
<tr>
<td>PVT median reaction time (baseline)</td>
<td>261.0 (45.0)</td>
<td>527.9 (577.4)</td>
<td>299.0 (55.1)</td>
<td>249.8 (27.2)</td>
<td>1.84</td>
<td>0.22</td>
</tr>
<tr>
<td>Epworth Sleepiness Scale (baseline)</td>
<td>14.5 (1.3)</td>
<td>15.9 (2.2)</td>
<td>16.0 (1.9)</td>
<td>13.8 (3.1)</td>
<td>0.78</td>
<td>0.53</td>
</tr>
<tr>
<td>Multiple Sleep Latency Test, mean sleep latency</td>
<td>3.0 (0.9)</td>
<td>6.0 (1.6)</td>
<td>4.1 (2.5)</td>
<td>11.7 (3.0)</td>
<td>63.1</td>
<td><0.0001 (groups different by definition)</td>
</tr>
<tr>
<td>Multiple Sleep Latency Test, number of sleep onset REM periods</td>
<td>3.3 (0.5)</td>
<td>0.2 (0.4)</td>
<td>0.4 (0.5)</td>
<td>0.7 (0.8)</td>
<td>30.0</td>
<td><0.0001 (groups different by definition)</td>
</tr>
<tr>
<td>TREATMENT DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment difference**, Median RT week 2</td>
<td>–11.3 (16.5)</td>
<td>–78.0 (123.1)</td>
<td>–18.7 (158.7)</td>
<td>–20.5 (29.2)</td>
<td>1.7</td>
<td>0.20</td>
</tr>
<tr>
<td>Treatment difference, ESS</td>
<td>–6.5 (2.0)</td>
<td>–54.0 (4.1)</td>
<td>–12.2 (2.1)</td>
<td>–3.3 (3.5)</td>
<td>1.6</td>
<td>0.23</td>
</tr>
<tr>
<td>Treatment difference, FOSQ</td>
<td>3.9 (1.9)</td>
<td>3.5 (3.7)</td>
<td>0.3 (0.9)</td>
<td>1.7 (2.0)</td>
<td>0.15</td>
<td>0.92</td>
</tr>
<tr>
<td>Treatment difference, SF-energy</td>
<td>29.4 (5.9)</td>
<td>22.3 (21.3)</td>
<td>6.0 (11.8)</td>
<td>26.7 (35.3)</td>
<td>0.99</td>
<td>0.42</td>
</tr>
<tr>
<td>Treatment difference, SSS week 1</td>
<td>–3.0 (1.4)</td>
<td>–1.8 (1.8)</td>
<td>–1.0 (1.2)</td>
<td>–1.3 (1.4)</td>
<td>0.18</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Values represent mean (standard deviation) for continuous variables, and number (percentage) for categorical variables.

*P-values reflect comparisons across diagnosis groups using Welch ANOVA on ranked values, Fisher exact test, or mixed effects model (see text).

** Treatment data values are reported as change scores comparing clarithromycin to placebo (i.e., values on clarithromycin minus values on placebo). For example, subjects with narcolepsy had an average ESS that was 6.5 points lower while on clarithromycin than on placebo.
Table 4

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Clarithromycin</th>
<th>Placebo</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any side effect</td>
<td>21/22 (95%)</td>
<td>15/20 (75%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Dysgeusia or Dysosmia</td>
<td>15/22 (68%)</td>
<td>0/20 (0%)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Any gastrointestinal symptom</td>
<td>16/22 (73%)</td>
<td>9/20 (45%)</td>
<td>0.07</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>3/22 (14%)</td>
<td>1/20 (5%)</td>
<td>0.61</td>
</tr>
<tr>
<td>Bloating/gas</td>
<td>2/22 (9%)</td>
<td>1/20 (5%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4/22 (18%)</td>
<td>5/20 (25%)</td>
<td>0.71</td>
</tr>
<tr>
<td>Nausea</td>
<td>7/22 (32%)</td>
<td>3/20 (15%)</td>
<td>0.28</td>
</tr>
<tr>
<td>Other, unspecified gastrointestinal distress</td>
<td>5/22 (23%)</td>
<td>5/20 (25%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Nose bleed</td>
<td>2/22 (9%)</td>
<td>0/20 (0%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Upper respiratory infection symptoms</td>
<td>0/22 (0%)</td>
<td>3/20 (15%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1/22 (5%)</td>
<td>1/20 (5%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Feeling “jittery” or “hyper”</td>
<td>3/22 (14%)</td>
<td>1/20 (5%)</td>
<td>0.61</td>
</tr>
<tr>
<td>Headache</td>
<td>3/22 (14%)</td>
<td>5/20 (25%)</td>
<td>0.45</td>
</tr>
<tr>
<td>Insomnia</td>
<td>6/22 (27%)</td>
<td>3/20 (15%)</td>
<td>0.46</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1/22 (5%)</td>
<td>1/20 (5%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Change in appetite (increase or decrease)</td>
<td>2/22 (9%)</td>
<td>1/20 (5%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Sweating, flushing, or feeling hot</td>
<td>2/22 (9%)</td>
<td>1/20 (5%)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Chi-square or Fisher exact test, as indicated. Results in bold are significant at \(p < 0.05 \).