ZYX-1, the unique zyxin protein of Caenorhabditis elegans, is involved in dystrophin-dependent muscle degeneration

Claire Lecroisey, Université Claude Bernard Lyon 1
Nicolas Brouilly, Université Claude Bernard Lyon 1
Hiroshi Qadota, Emory University
Marie-Christine Mariol, Université Claude Bernard Lyon 1
Nicolas C. Rochette, Université Claude Bernard Lyon 1
Edwige Martin, Université Claude Bernard Lyon 1
Guy Benian, Emory University
Laurent Ségalat, Université Claude Bernard Lyon 1
Nicole Mounier, Université Claude Bernard Lyon 1
Kathrin Gieseler, Université Claude Bernard Lyon 1

Journal Title: Molecular Biology of the Cell
Volume: Volume 24, Number 8
Publisher: American Society for Cell Biology | 2013-04-15, Pages 1232-1249
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1091/mbc.E12-09-0679
Permanent URL: https://pid.emory.edu/ark:/25593/rqcjj

Final published version: http://dx.doi.org/10.1091/mbc.E12-09-0679

Copyright information:
© 2013 Lecroisey et al.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Accessed December 21, 2018 6:54 PM EST
ZYX-1, the unique zyxin protein of Caenorhabditis elegans, is involved in dystrophin-dependent muscle degeneration

Claire Lecroiseyab,*, Nicolas Brouillyab,*, Hiroshi Qadota, Marie-Christine Mariola,b, Nicolas C. Rochetteabcd, Edwige Martinab, Guy M. Benian, Laurent Ségalatabc, Nicole Mounierabc, and Kathrin Gieselerab

*Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; aCentre de Génétique et de Physiologie Moléculaires et Cellulaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5534, 69622 Villeurbanne, France; bDepartment of Pathology, Emory University, Atlanta, GA 30322; cLaboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France

ABSTRACT In vertebrates, zyxin is a LIM-domain protein belonging to a family composed of seven members. We show that the nematode Caenorhabditis elegans has a unique zyxin-like protein, ZYX-1, which is the orthologue of the vertebrate zyxin subfamily composed of zyxin, migfilin, TRIP6, and LPP. The ZYX-1 protein is expressed in the striated body-wall muscles and localizes at dense bodies/Z-discs and M-lines, as well as in the nucleus. In yeast two-hybrid assays ZYX-1 interacts with several known dense body and M-line proteins, including DEB-1 (vinculin) and ATN-1 (α-actinin). ZYX-1 is mainly localized in the middle region of the dense body/Z-disc, overlapping the apical and basal regions containing, respectively, ATN-1 and DEB-1. The localization and dynamics of ZYX-1 at dense bodies depend on the presence of ATN-1. Fluorescence recovery after photobleaching experiments revealed a high mobility of the ZYX-1 protein within muscle cells, in particular at dense bodies and M-lines, indicating a peripheral and dynamic association of ZYX-1 at these muscle adhesion structures. A portion of the ZYX-1 protein shuttles from the cytoplasm into the nucleus, suggesting a role for ZYX-1 in signal transduction. We provide evidence that the zyx-1 gene encodes two different isoforms, ZYX-1a and ZYX-1b, which exhibit different roles in dystrophin-dependent muscle degeneration occurring in a C. elegans model of Duchenne muscular dystrophy.
Many studies have been conducted in different vertebrate cell lines to decipher the function of the zyxin protein. Zyxin is a cytoskeletal protein shown to be associated with cell adhesion complexes and to shuttle between these sites and the nucleus (Nix and Beckerle, 1997; Nix et al., 2001; Wang and Gilmore, 2003; Hervy et al., 2006). Zyxin regulates actin assembly and remodeling, cell mobility, and cell adhesion, as well as gene expression (Yamada et al., 2003; Hoffman et al., 2006, 2012; Janssen and Marynen, 2006; Martynova et al., 2008; Fraley et al., 2012). Zyxin was further shown to promote apoptosis (Hervy et al., 2010; Crone et al., 2011) and to be implicated in mechanotransduction and stretch-induced gene expression (Cattaruzza et al., 2004; Wójtowicz et al., 2010). In humans, skeletal muscle expresses zyxin, which interacts with several sarcomeric proteins (Morgan et al., 1995; Linnemann et al., 2010; Sun et al., 2010). However, the physiological role of zyxin in skeletal muscle has not been reported.

The fruit fly Drosophila melanogaster has two zyxin-like proteins, ZYX102 and CG11063, containing the characteristic motifs of vertebrate zyxins. The zyx102 gene is expressed during oogenesis and embryogenesis, which involve major cytoskeletal reorganizations (Renfranz et al., 2003). In follicular cells of egg chambers subjected to disruption of actin bundles by laser nanosurgery, the ZYX102 protein rapidly relocates at anchor points, suggesting a mechanosensitive role, as in vertebrates (Colombelli et al., 2009). Both Drosophila zyxin-like proteins seem to be required during development, as the knockdown of the corresponding genes results in lethality during the pharate adult stage (Das Thakur et al., 2010; Renfranz et al., 2010) and are also reported to be components of the Hippo signaling pathway implicated in growth control (Das Thakur et al., 2010; Rauskolb et al., 2011).

The nematode Caenorhabditis elegans has a homologue of the zyxin protein named ZYX-1. This protein was first identified in a yeast two-hybrid screen for proteins that bind to germline RNA helicase (GLH) proteins (Smith et al., 2002). A functional interaction between GLHs and ZYX-1 seems, however, unlikely, since the zyx-1 gene is not expressed in the germline. We previously showed that ZYX-1 interacts with the DYC-1 protein known to be functionally related to DYS-1, the C. elegans orthologue of dystrophin (Bessou et al., 1998; Gieseler et al., 2000; Lecroisey et al., 2008). In humans, mutations of the dystrophin gene cause Duchenne muscular dystrophy (DMD), the major X-linked muscular disorder (Koenig et al., 1987; Ahn and Kunkel, 1993). In C. elegans, loss-of-function mutations of the dys-1 gene do not lead to obvious muscle degeneration unless placed in the sensitized genetic background of a mild mutator affecting the hli-1 gene (Gieseler et al., 2000). HLH-1 is the homologue of MyoD, a muscle-specific transcription factor (Chen et al., 1994). The dys-1(cx-18); hli-1(cc561) double mutant exhibits a time-dependent muscle degeneration phenotype and is a powerful C. elegans model for dystrophin-dependent muscle degeneration, mimicking DMD (Gieseler et al., 2000).

The overall sarcomeric composition and organization, as well as the function of the muscle cells, was well conserved between nematodes and vertebrates during evolution. The actin-containing thin filaments are anchored at Z-discs, myosin-containing thick filaments are anchored at M-lines, and both M-lines and Z-discs are connected to the extracellular matrix. In vertebrates, this connection is provided by costameres, which are muscle-specific integrin adhesion complexes (Ervasti, 2003; Samarel, 2005). In C. elegans, the Z-disc analogues, named dense bodies, and the M-lines are directly anchored into the sarcolemma via integrin-containing complexes (Moerman and Williams, 2006; Lecroisey et al., 2007). Genetic activation of zyx-1 either by mutation or RNA interference (RNAi) is not lethal and does not lead to any obvious phenotype except for a locomotion defect detected in a body-bending assay (Smith et al., 2002; Lecroisey et al., 2008; Nahabedian et al., 2012).

By sequence and phylogenetic analysis, we found that, in contrast to vertebrates and other animal species, ZYX-1 is the unique representative of zyxin protein family in C. elegans and appears to be the orthologue of the vertebrate zyxin subfamily composed of zyxin, migfilin, TRIP6, and LPP. This prompted us to decipher the function of this protein, and we investigated in detail the localization, dynamics, and protein interactions of ZYX-1 within the striated body-wall muscles of C. elegans. Using a genetic analysis, we established that ZYX-1 plays a role in dystrophin-dependent muscle degeneration.

RESULTS

The C. elegans ZYX-1 is a zyxin-like protein

The zyx-1 gene (also known as F42G4.3) is located on chromosome II and is predicted to produce different transcripts encoding putative proteins of 200–647 amino acids (WormBase, www.wormbase.org). All predicted ZYX-1 isoforms contain three C-terminal LIM domains. The first isoform that was predicted on WormBase, F42G4.3a (ZYX-1a), is composed of 603 amino acids (Figure 1), and the LIM domains extend, respectively, over amino acids 411–463, 471–522, and 531–592 (Figure 2A). The shortest predicted isoform, F42G4.3b (ZYX-1b), composed of 200 amino acid residues, is almost identical to the C-terminus of the ZYX-1a isoform and contains the three LIM domains. The five most N-terminal amino acids are encoded by an alternative exon (Figure 1).

The LIM-domain consensus sequence is defined as CX2CX16–23HX2CX2CX2CX16–21CX2/C/H/D, where X is any amino acid (reviewed in Kadramas and Beckerle, 2004). This consensus perfectly matches all three LIM domains of the C. elegans ZYX-1 proteins (Figure 2B). The high sequence conservation of these regions in ZYX-1 suggests that they form LIM domains, each consisting of two adjacent zinc (or other metal) fingers, a structure that mediates protein–protein interactions.

The ZYX-1a isoform contains two other characteristic motifs of zyxin-like proteins in its N-terminal region: a potential NES and three PRRs, which are putative sites for protein–protein interactions (reviewed in Kay et al., 2000).

The putative NES sequence extends from amino acid 69 to 81 and is in agreement with the generally accepted NES consensus sequence (Nix and Beckerle, 1997). In particular, the ZYX-1 NES sequence matches the class1 NES consensus sequence, for which nuclear export activity has been demonstrated (Kosugi et al., 2008; Figure 2B). No nuclear localization signal (NLS) has been reported in zyxins, and none was found in the ZYX-1 sequence.

The PRRs in ZYX-1a consist of two sequences of, respectively, nine and six contiguous proline residues, located at amino acids 3–11 and 283–288, and a third region expanding from amino acids 36–46 with the sequence PAPAPPKPSRP (Figure 2A). It is noteworthy that none of these three PRRs contains the consensus sequence F/LPPP characterized as ActA repeats that were identified in vertebrate zykins to link EHV1 domains of the Ena/VASP family (Renfranz and Beckerle, 2002).

ZYX-1 is the unique zyxin-like protein in C. elegans

To investigate whether other members of the zyxin-like protein family exist in C. elegans, we used the seven human members of the zyxin family to search for similarities in the nematode proteome (as available from WormBase) with PsiBLAST. The best hit was ZYX-1
Comparison by Log Expectation (MUSCLE) software. The N-terminal part of the sequences was too divergent to be reliably aligned; therefore the analysis was based on the conserved C-terminal region containing the three LIM domains. A maximum-likelihood tree was built using RAxML software (Figure 4).

First, our analysis clearly demonstrates that the zyxin family is divided into two subfamilies with a 100% bootstrap support, which were named the ajuba and zyxin subfamilies. In both deuterostomes and protostomes, proteins of each subfamily are present, suggesting that their common ancestor already had two zyxin-like proteins. The *D. melanogaster* Zyx102 and jub (or CG11063), respectively, belong to the zyxin and the ajuba subfamilies, which is in agreement with a previous report (Renfranz et al., 2003). Second, the seven zyxin-like proteins of the two vertebrate species appeared to be arranged in pairs, all of which had high bootstrap support, except for the WTIP proteins. This suggests a one-to-one orthology relationship and the presence of a family composed of seven zyxin-like proteins in the vertebrate ancestor. Third, the unique *C. elegans* ZYX-1 fell into the zyxin subfamily and appeared to be the orthologue of the human zyxin, migfilin, TRIP6, and LPP proteins.

Expression pattern and subcellular localization of the ZYX-1 protein

To analyze the expression pattern of the ZYX-1 protein in *C. elegans*, we generated the pKG106 transgene, which contains the entire ZYX-1–encoding sequence fused to the green fluorescent protein.
bodies and axons; Figure 5, E–H). The signal observed with the muscle cells (at dense bodies and M-lines), and cord neurons (in cell bodies at the beginning of the third LIM domain. In wild-type N2 worms, with a monoclonal antibody directed against 20 amino acids located not significantly alter the subcellular localization of the ZYX-1–GFP protein within the dense bodies of body-wall muscle cells (Figure 5C) and in both cell bodies and axons (Figure 5D). These observations confirm previously published results using transgenic worms carrying the pKG001 construct, which encodes a ZYX-1–GFP protein lacking the 39 C-terminal amino acids of the third LIM domain (Figure 1; Lecroisey et al., 2008). Thus the absence of the third LIM domain (in pKG001) does not significantly alter the subcellular localization of the ZYX-1–GFP protein at dense bodies and M-lines, as well as in the nucleus of body-wall muscle cells (Figure 5C) and in both cell bodies and axons; Figure 5, E–H). The signal observed with the monoclonal antibody is much weaker, however, than the GFP signal in transgenic worms. In particular, we were unable to detect a signal in muscle cell nuclei. This could be explained by a lower efficiency of antibodies or most likely by the lower amounts of the endogenous proteins compared with overexpressed transgenes. Other studies reported a discrepancy between the localization of the GFP-tagged protein and antibody localization. For example, UNC-95-GFP is found at M-lines, dense bodies, and nuclei (Broday et al., 2004), but anti–UNC-95 stained only M-lines and dense bodies (Qadota et al., 2007). In addition, it should be pointed out that in vertebrate tissues, zyxin is also expressed at low amounts (Crawford and Beckerle, 1991). Thus we performed most of the following experiments on transgenic worms expressing a ZYX-1–GFP fusion protein.

We particularly focused on the precise localization of ZYX-1–GFP in body-wall muscles. To this end, we performed immuno–electron microscopy experiments on transgenic zyx-1::gfp-expressing worms. We observed a localization of the ZYX-1–GFP protein at dense bodies, over the whole length of M-lines, and in the nucleus (Figure 5I).

Using confocal analysis, we determined the localization of the ZYX-1–GFP protein relative to two major dense body proteins, ATN-1 and DEB-1, orthologues of α-actinin and vinculin, respectively (Barstead and Waterston, 1989, 1991). We stained zyx-1::gfp transgenic worms for DEB-1 or ATN-1 using monoclonal antibodies MH24 and MH35, respectively (Francis and Waterston, 1991), and mounted them with microbeads, which prevent flattening of the worms. This approach allowed us to acquire a lateral view of the dense bodies in order to take advantage of the three-times-higher x/y resolution compared with the z resolution (Figure 5, J–L). ATN-1 and DEB-1, respectively, occupied the apical and basal regions of the dense body, as previously described (Francis and Waterston, 1991). The ZYX-1–GFP protein mainly localizes in the middle region and partially overlaps with the ATN-1– and the DEB-1–containing regions (Figure 5, M and N).

Dynamics of ZYX-1 localization in body-wall muscle cells

In vertebrates, zyxin moves from focal adhesions to the nucleus and is proposed to have a signaling function (Nix and Beckerle, 1997; Nix et al., 2001). However, the dynamics of zyxin had not been analyzed in skeletal muscles. We investigated the dynamics of the ZYX-1 protein within the C. elegans striated body-wall muscle cells, using fluorescence recovery after photobleaching (FRAP) experiments on living zyx-1::gfp transgenic worms (Figure 6).

FRAP experiments were performed in cytoplasmic regions containing contractile filaments of body-wall muscle cells (Figure 6A). Twenty successive fluorescence-bleaching laser iterations led to a reduction of the initial GFP fluorescence signal by ~60%. In five

![Figure 2: Analysis of the ZYX-1 protein sequence. (A) Predicted amino acid sequence of the C. elegans ZYX-1 protein encoded by the F42G4.3/zyx-1 gene (UniProt accession number Q9U3F4). This sequence corresponds to the putative 603–amino acid isoform (F42G4.3a). The characteristic motifs of zyxin family proteins are indicated as follows: PRPs in boldface, the NES of zyxin family protein with known consensus sequences. The three LIM domains of C. elegans ZYX-1 perfectly match the consensus sequence proposed by Kadrmas and Beckerle (2004), where X is any amino acid. The class 1 NES consensus sequence proposed by Kosugi et al. (2008) is ψΨ[1–2]?Ψ[1–2]Ψ[1–2]Ψ[1–2], where Ψ is any amino acid except proline, and [1–2] are any two or three amino acids except proline. It correctly matches the C. elegans ZYX-1 sequence, except at the carboxy-terminal end, where four amino acid residues are present instead of one between the two last aliphatic residues.](image)
independent repeats of the experiment the half-time of fluorescence recovery ranged from 2.45 to 6.27 s, with an average half-time recovery of 4.96 s (Figure 7N). The maximal recovery of the initial fluorescence was reached after 70 s. The mobile fraction of the ZYX-1–GFP protein, which corresponds to the percentage of maximal recovery, was 76.7–80.9%, with an average of 78.6%. In comparison, a previous FRAP study in C. elegans reported a half-time of fluorescence recovery of ~90 s for the most dynamic analyzed proteins associated with dense bodies and/or M-lines like T03G6.3 and UNC-95. These proteins exhibited mobile fractions of, respectively, 90 and 50%, and the maximal recovery of the initial fluorescence was observed after 900 s, whereas for the dense body protein UNC-112 a complete lack of recovery was reported (Ghosh and Hope, 2010). Thus the extremely rapid and nearly complete recovery of the ZYX-1–GFP signal in the sarcomeric zone reflects a high rate of exchange of ZYX-1–GFP in the cytoplasm of muscle cells. It also indicates a high mobility of this protein within the muscle cell, as well as a dynamic association of the ZYX-1 protein with muscle adhesion structures.

We further performed FRAP experiments on the muscle cell nucleus (Figure 6B). Eight successive bleaching laser iterations were sufficient to reduce the initial fluorescence by 70%. In four independent replicates of this experiment a mobile fraction of 14.3–26.3% was observed, with an average of 19.9%. The half-time of fluorescence recovery of ZYX-1–GFP in the nucleus ranged from 4.5 to 11.2 s, with an average half-time recovery of 7.57 s (data not shown). This result indicates that the recovery of ZYX-1–GFP in the nucleus is slightly slower than at the sarcomere, which is in agreement with an active transport mechanism. Indeed, LIM domains and the N-terminal region of zyxin can independently target the protein into the nucleus (Nix et al., 2001). Because zyxin-family proteins lack a NLS, it has been suggested that their import into the nucleus may involve protein interactions with proteins carrying a NLS (reviewed in Wang and Gilmore, 2003). Our results also suggest that the larger portion of nuclear ZYX-1–GFP (~80%) may be permanently localized in the nucleus.

Taken together, our FRAP experiments indicate that ZYX-1 is a highly dynamic protein within the muscle cell and may shuttle between muscle adhesion complexes and the nucleus, thus suggesting a signaling function for the protein.

Interaction of ZYX-1 with muscle dense body and M-line proteins

To identify the molecular partners of the ZYX-1 protein at dense bodies and M-lines of C. elegans body-wall muscle cells, we investigated whether ZYX-1 interacts with proteins of these two structures, using the yeast two-hybrid system. The ZYX-1a protein was used as a bait to test its interaction with a collection of known dense body and M-line proteins (Qadota et al., 2007, 2008; Xiong et al., 2009). Among the tested components of the dense body (Table 1), ZYX-1 interacted with ATN-1 (α-actinin) and DEB-1 (vinculin), which is in agreement with our confocal analysis reported earlier. ZYX-1 also interacted with ALP-1 (Enigma; McKeown et al., 2006), as well as with UIG-1, an UNC-112–interacting guanine nucleotide exchange factor specific

FIGURE 4: Maximum-likelihood phylogenetic tree of zyxin-like proteins. Bootstrap values (in percentage) are displayed on branches indicating their statistical support. Branches with <60% support were collapsed. The ajuba and zyxin subfamilies and the taxonomic groups (protostomes and deuterostomes) are indicated. Ce, C. elegans; As, A. suum; Dm, D. melanogaster; Cg, C. gigas; Hs, H. sapiens; Dr, D. rerio; Bf, B. floridae.
Localization and dynamics of ZYX-1 at dense bodies is ATN-1 (γ-actinin) dependent

To analyze the functional relevance of the protein interactions detected in yeast two-hybrid assays, we further asked whether the localization of ZYX-1 at dense bodies or M-lines depends on the presence of its two-hybrid partners and vice versa. For this purpose, using appropriate antibodies, we analyzed the localization of ATN-1, ALP-1, DEB-1, DYC-1, UIG-1, LIM-8, LIM-9, and SCPL-1 proteins in the body-wall muscles of zyx-1(gk190) mutants. The zyx-1(gk190) mutation deletes the coding sequences of the first two LIM domains (Figure 1), leading to a frameshift, followed by a premature stop codon, thus preventing the translation of all the three LIM domains (www.celenganskoconsortium.org). No significant modification of the localization of any of the analyzed proteins was detected in zyx-1(gk190) mutants compared with wild type (Figure 7 and Supplemental Figure S1). Thus it appears that ZYX-1 is not required for the proper assembly and morphology of muscle cell adhesion complexes.

Conversely, the ZYX-1 antibody was used to detect the protein in the muscle cells of atn-1(ok84), alp-1(tr1(1373), dcy-1(cx32), uig-1(ok884), lim-8(ok941), lim-9(gk106), and scpl-1(gk283) mutants. Because deb-1 mutants are embryonic lethal, we were unable to establish whether ZYX-1 requires DEB-1 for its localization. The localization of the ZYX-1 protein was diffusely observed in the body-wall muscles of the atn-1(ok84) mutant (Figure 7, K and L) but remained unchanged in all the tested mutants when compared with wild-type muscles (data not shown). These observations suggest that ALP-1, UIG-1, DYC-1, LIM-8, and LIM-9, and SCPL-1 are not essential for the localization of ZYX-1 at dense bodies or M-lines, whereas ATN-1 is required for proper ZYX-1 localization at dense bodies.

FRAP experiments performed on atn-1(ok84) mutants expressing ZYX-1–GFP further revealed a significant modification of the ZYX-1–GFP dynamic when compared with wild-type (Figure 7, M and N). We observed that after the bleaching of a sarcomeric zone, ZYX-1–GFP fluorescence recovery had the same half-time of fluorescence recovery in wild-type and the atn-1(ok84) mutant; however, the mobile fraction of ZYX-1–GFP was significantly decreased in the atn-1(ok84) mutant compared with wild type. This indicates that the interaction of ZYX-1 with ATN-1 creates a mobile pool of ZYX-1 and thus that ATN-1 is required for the turnover of ZYX-1 at dense bodies. Moreover, we observed that in the absence of ATN-1, the DEB-1 and ZYX-1–GFP proteins were still present at dense bodies, but their localizations were enlarged compared with wild type (Supplemental Figure S2). A similar broadening of the localization of ALP-1 was reported in atn-1(ok84) mutants (Han and Beckerle, 2009). The broader localization of ZYX-1–GFP and DEB-1 is consistent with shorter and broader dense bodies observed by electron microscopy in atn-1(ok84) mutants (Moulder et al., 2010).

ZYX-1 participates in dystrophin-dependent muscle degeneration

We previously showed that transgenic overexpression of the ZYX-1 binding partner DYC-1 in the dystrophic dys-1(cx-18); hlh-1(cc561) double mutant significantly reduced muscle degeneration compared with nontransgenic dys-1(cx-18); hlh-1(cc561) worms (Gieseler et al., 2000). We thus investigated whether ZYX-1 plays a similar role in dystrophin-dependent muscle degeneration. To this end, we quantified abnormal body-wall muscle cells stained with phalloidin–rhodamine in different genetic contexts and normalized to 100% the muscle degeneration observed in the dystrophic dys-1(cx-18); hlh-1(cc561) mutant (Figure 8).

The pKG106 transgene (Figure 1) was introduced in the dystrophic dys-1(cx-18); hlh-1(cc561) mutant background in order to overexpress the ZYX-1 protein. These transgenic worms exhibited ~35% less muscle degeneration compared with nontransgenic dystrophic dys-1(cx-18); hlh-1(cc561) worms. This observation suggests that the overexpression of zyx-1 is beneficial to dystrophin-dependent muscle degeneration. We then genetically introduced the zyx-1(gk190) loss-of-function allele into the hlh-1(cc561) and the dys-1(cx-18) mutant background. The zyx-1(gk190) hlh-1(cc561) or the zyx-1(gk190); dys-1(cx-18) double mutant did not present obvious muscle degeneration (Figure 8A). However, the introduction of the zyx-1(gk190) allele in the dys-1(cx-18); hlh-1(cc561) double mutant background led to a strong reduction of muscle degeneration. The dys-1(cx-18); hlh-1(cc561) zyx-1(gk190) triple mutant exhibited ~60% fewer degenerated muscle cells compared with the dys-1(cx-18); hlh-1(cc561) double mutant (Figure 8A; representative pictures of phallolidin–rhodamine–stained muscles of the dys-1(cx-18); hlh-1(cc561) double mutant and the dys-1(cx-18); hlh-1(cc561) zyx-1(gk190) triple mutant are shown in Supplemental Figure S3). Thus the overexpression of zyx-1 and the loss of zyx-1 function are both beneficial to dystrophin-dependent muscle degeneration in the dystrophic dys-1(cx-18); hlh-1(cc561) genetic background; the beneficial effect, however, is more important when zyx-1 function is lost (Figure 8A). We confirmed this result using systemic RNAi-mediated inactivation of the zyx-1 gene by targeting the 3′ sequence of the mRNA in the dys-1(cx-18); hlh-1(cc561) double mutant. The muscle degeneration was significantly reduced by ~45% compared with untreated dys-1(cx-18); hlh-1(cc561) control animals (Figure 8B), indicating that ZYX-1 actively contributes to muscle degeneration in dystrophic dys-1(cx-18); hlh-1(cc561) worms.

The role of ZYX-1 in muscle degeneration depends on its muscular localization

Because ZYX-1 is present in both muscle cells and motor neurons, we further asked whether the observed effect on muscle degeneration...
FIGURE 5: Localization of ZYX-1–GFP and ZYX-1 proteins. (A–H) Confocal analysis using antibodies directed against GFP in transgenic worms carrying the pKG106 transgene (A–D) or against ZYX-1 in wild-type worms (E–H). ZYX-1–GFP and ZYX-1 are present in spermathecae (gray arrows in A and E; the worm is surrounded by a dotted line; scale bar, 100 μm; B and F, scale bar, 10 μm), in body-wall muscle cells (C and G, scale bar, 5 μm) with a subcellular localization in the nucleus, at dense bodies (empty arrowheads) and M-lines (chevrons), and in nerve cells (D and H, scale bar, 5 μm) in both cell bodies (filled arrows) and axons (filled arrowheads). In D and H the “fire” artificial colors were used to enhance the differences of signal intensity between axons and cell bodies. The corresponding “fire” scale shown on the right in D allows for the observation of the relative intensity of the artificial colors in D (GFP antibody) and H (ZYX-1 antibody). Note that the ZYX-1 antibody leads to an important background signal (E and H). (I) Immuno–electron microscopy analysis of body-wall muscle cells in a transgenic line carrying the pKG001 transgene using an antibody directed against GFP. In transversal sections of muscle cells, ZYX-1–GFP localizes at dense bodies (arrowheads) and nucleus (asterisks inside the dotted line highlighting the nuclear membrane). Mitoch, mitochondria. Inset, localization of ZYX-1–GFP along the M-line (chevrons). The anchoring site of the M-line is located between the two hashes, and the basal part of a dense body is indicated by arrowheads. Scale bar, 0.5 μm for both images. (J–N) Confocal analysis of dense bodies in body-wall muscle cells in the same transgenic line as in A–D. (J, K) Schematic view of the method used to mount worms; lateral view in J, top view in K. Microbeads were used to prevent flattening of the worms. We focused on muscle cells.
We introduced the atn-1(ok84) allele in the dys-1(cx-18); hlh-1(cc561) double-mutant background. The dys-1(cx-18); hlh-1(cc561); atn-1(ok84) triple mutant exhibited nearly 60% less muscle degeneration compared with the dys-1(cx-18); hlh-1(cc561) double mutant (Figure 8A). This observation indicates a functional link between ATN-1 and ZYX-1 and suggests that proper ZYX-1 localization at the dense body may be required for muscle degeneration to occur.

The ZYX-1a and ZYX-1b isoforms play distinct roles in dystrophin-dependent muscle degeneration

To decipher the dual effect of zyx-1 overexpression and loss of function in the dystrophic dys-1(cx-18); hlh-1(cc561) mutant background, we investigated whether and how both isoforms are involved in the muscle degenerative process.

Worms carrying the zyx-1::gfp pKG106 transgene were exposed to RNAi-mediated inactivation of the zyx-1 gene. In transgenic worms treated with systemic zyx-1 RNAi targeting the 3′ sequence of the mRNA, the ZYX-1–GFP signal could no longer be detected in body-wall muscle cells, whereas the neuronal signal was still present (Figure 8D, b). This observation, taken together with the previously reported resistance of neurons to systemic RNAi (Maeda et al., 2001; Timmons et al., 2001; Kamath et al., 2003), indicates that the loss of ZYX-1 in muscles, but not in neurons, is responsible for the reduction of muscle degeneration observed in dystrophic dys-1(cx-18); hlh-1(cc561) mutants exposed to zyx-1 RNAi.

In addition, we showed earlier that ZYX-1 is mislocalized in the muscles of the atn-1(ok84) mutant. We therefore wondered whether the loss of atn-1 function would be beneficial to dystrophin-dependent muscle degeneration. Thus we introduced the atn-1(ok84) allele in the dys-1(cx-18); hlh-1(cc561) double-mutant background. The dys-1(cx-18); hlh-1(cc561); atn-1(ok84) triple mutant exhibited nearly 60% less muscle degeneration compared with the dys-1(cx-18); hlh-1(cc561) double mutant (Figure 8A). This observation indicates a functional link between ATN-1 and ZYX-1 and suggests that proper ZYX-1 localization at the dense body may be required for muscle degeneration to occur.

The ZYX-1a and ZYX-1b isoforms play distinct roles in dystrophin-dependent muscle degeneration

To decipher the dual effect of zyx-1 overexpression and loss of function in the dystrophic dys-1(cx-18); hlh-1(cc561) mutant background, we investigated whether and how both isoforms are involved in the muscle degenerative process.

Western blot analysis using an antibody directed against GFP performed on protein extracts of transgenic worms carrying either the zyx-1::gfp transgenic worms carrying the pKG001 plasmid. Two FRAP experiments were performed in a cytoplasmic zone containing contractile filaments (A) and in a nucleus (B) of body-wall muscle cells. Top, fluorescence images of photobleaching and recovery of the signal. The asterisk in B indicates a cord neuron expressing the zyx-1::gfp transgene. The square in A and the circle in B indicate the photobleached regions. Images were taken before bleaching (prebleach), just after bleaching (t = 0), and after 70 s of recovery (t = 70 s). Bottom, graphs showing normalized RFI vs. time in seconds and calculated parameters of the respective experiences. After 20 and 8 bleaching laser iterations on, respectively, sarcomeric and nuclear regions, a reduction by 60 and 70% of the initial prebleach fluorescence was observed. On the y-axis, 1.0 represents the RFI of the bleached zone before bleaching steps. Here t = 0 corresponds to the first acquisition after bleaching steps, and RFI was normalized to be zero at t = 0. For each time point, the fluorescence intensity was measured (blue dots) and the corresponding fitted curve calculated (in red). The maximum recovery of fluorescence (red dotted line) and half-time for maximum recovery (green dotted line) were calculated. The percentage of maximum fluorescence recovery corresponds to the mobile fraction of the ZYX-1–GFP protein.
could not specifically inactivate the short isoform without affecting the expression of the long isoform. Semiquantitative RT-PCRs performed on worms subjected to systemic RNAi targeting the 3′ sequence of the mRNA revealed strongly reduced amounts of both zyx-1a and the zyx-1b mRNAs. Specific targeting of the 5′ coding sequence of the long zyx-1a transcripts specifically down-regulated the amount of the zyx-1a mRNA without affecting the amount of the zyx-1b mRNA (Figure 8C).

The specific RNAi-mediated down-regulation of the zyx-1a mRNA in the dystrophic dys-1(cx-18); hlh-1(cc561) mutant led to a reduction of muscle degeneration by ∼50% compared with untreated dys-1(cx-18); hlh-1(cc561) control animals and is almost identical to that observed after RNAi-mediated down-regulation of both zyx-1a and zyx-1b mRNAs. Specific targeting of the 5′ coding sequence of the long zyx-1a transcripts specifically down-regulated the amount of the zyx-1a mRNA without affecting the amount of the zyx-1b mRNA (Figure 8C).

The specific RNAi-mediated down-regulation of the zyx-1a mRNA in the dystrophic dys-1(cx-18); hlh-1(cc561) mutant led to a reduction of muscle degeneration by ∼50% compared with untreated dys-1(cx-18); hlh-1(cc561) control animals and is almost identical to that observed after RNAi-mediated down-regulation of both zyx-1a and zyx-1b mRNAs. Specific targeting of the 5′ coding sequence of the long zyx-1a transcripts specifically down-regulated the amount of the zyx-1a mRNA without affecting the amount of the zyx-1b mRNA (Figure 8C).
C. elegans

<table>
<thead>
<tr>
<th>C. elegans protein</th>
<th>Vertebrate orthologue or related family</th>
<th>Dense body</th>
<th>Interaction with ZYX-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN-1</td>
<td>α-Actinin</td>
<td>X X</td>
<td>Yes</td>
</tr>
<tr>
<td>ALP-1</td>
<td>ALP/ Enigma</td>
<td>X X</td>
<td>Yes</td>
</tr>
<tr>
<td>DEB-1</td>
<td>Vinculin</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>DYC-1</td>
<td>CAPON</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>UIG-1</td>
<td>Cdc42 GEF</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>DYS-1</td>
<td>Dystrophin</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>DIM-1</td>
<td>Immunoglobulin-domain family</td>
<td>*</td>
<td>No</td>
</tr>
<tr>
<td>TLN-1</td>
<td>Talin</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>UNC-97</td>
<td>Pinch</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>PAT-4</td>
<td>ILK</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>PAT-6</td>
<td>Actopaxin</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>UNC-112</td>
<td>Kindilin</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>PXL-1</td>
<td>Paxilin</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>UNC-95</td>
<td>LIM-domain family</td>
<td>X X</td>
<td>No</td>
</tr>
<tr>
<td>LIM-8</td>
<td>LIM-domain family</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>LIM-9</td>
<td>FHL</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>SCPL-1</td>
<td>SCP</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>HUM-6</td>
<td>MYO7A</td>
<td>Unknown</td>
<td>No</td>
</tr>
<tr>
<td>KIN-32</td>
<td>FAK</td>
<td>Unknown</td>
<td>No</td>
</tr>
<tr>
<td>MLP-1</td>
<td>MLP</td>
<td>Unknown</td>
<td>No</td>
</tr>
<tr>
<td>F42H10.3</td>
<td>LASP</td>
<td>Unknown</td>
<td>No</td>
</tr>
</tbody>
</table>

ZYX-1

ZYX-1 LIM domains

ZYX-1 ΔLIM domains

pGAD-C1 (empty vector)

All results obtained by yeast two-hybrid assays using the ZYX-1 bait protein (isoform ZYX-1a) against a prey protein collection of known dense body and M-line proteins. The first column gives the tested C. elegans proteins, and the second column their vertebrate orthologues or related families. The third and fourth columns summarize the localization of the concerned proteins at dense bodies and M-lines, respectively. For dense body localization three subcolumns indicate the position of the respective protein within the dense body along the basoapical axis. Last four lines: the ZYX-1a bait protein was also tested against itself (ZYX-1), ZYX-1 LIM domains, and ZYX-1 without LIM domains (ZYX-1 ΔLIM domains). The empty vector (pGAD-C1) was used as the negative control. The last column recapitulates the interactions: Yes, interaction; No, no interaction. *DIM-1 localizes near the muscle cell membrane around and between the dense bodies.

TABLE 1: Dense body and M-line proteins tested for interaction with ZYX-1.

transgenes (Figure 9A). In contrast, in transgenic worms carrying the pKG82 transgene the ZYX-1a–HA protein could be detected only in body-wall muscle cells with a localization that seemed restricted to dense bodies (Figure 9B). Thus the long and short isoforms exhibit different expression patterns. Both are coexpressed in body-wall muscle, where they colocalize at dense bodies. Accordingly, we observed that the specific RNAi-mediated down-regulation of the ZYX-1a isoform in transgenic worms expressing both isoforms (pKG106 transgene) did not abolish the muscular ZYX-1–GFP signal, suggesting that this remaining signal corresponds to the short ZYX-1b–GFP isoform (Figure 8D, c).

To investigate the role of the two ZYX-1 isoforms and their contribution to muscle degeneration, we introduced each transgene into the dys-1(cx18); hlh-1(cc561) zyx-1(gk190) triple mutant. As expected, the overexpression of the long isoform (pKG82) increased the muscle degeneration phenotype compared with the triple mutant, reaching 60% of muscle degeneration with respect to the dystrophic dys-1(cx18); hlh-1(cc561) mutant (Figure 9C). The overexpression of the short isoform (pKG83), in contrast, reduced muscle degeneration to 10% compared with the dystrophic mutant. In the genetic context of the dys-1(cx18); hlh-1(cc561) zyx-1(gk190) triple mutant, the overexpression of the long ZYX-1a isoform thus seemed to abolish the beneficial effect of the zyx-1(gk190) mutation on muscle degeneration, whereas the short isoform instead enhanced the beneficial effect.

DISCUSSION

Phylogeny of the C. elegans ZYX-1 protein

We demonstrated that ZYX-1 is the unique representative of the zyxin-like protein family in C. elegans. Our phylogenetic analysis indicated that zyxin family proteins are distributed into two distinct subfamilies: the ajuba and the zyxin subfamilies. Because these two subfamilies exist in both deuterostomes (amphioxus, zebrafish, and human) and protostomes (fruit fly, oyster, and the
During the evolution of vertebrates, the genes encoding the two ancestor zyxin-like proteins were duplicated several times in a pattern that coincides with the two successive whole-genome duplications (Dehal and Boore, 2005). It is noteworthy that seven of the eight paralogues were maintained in the vertebrate lineage, suggesting neofunctionalization or subfunctionalization of these proteins (Conant and Wolfe, 2008; Kassahn et al., 2009) or dosage compensation requirements (Makino and McLysaght, 2010).

In protostomes and amphioxus (in which no genome duplications occurred), the two zyxin-like proteins were maintained, one in the ajuba subfamily and the other in the zyxin subfamily. Each of these zyxin-like proteins can be considered as the functional orthologues of, respectively, vertebrate ajuba-LIMD1-WTIP1 and zyxin-migfilin-TRIP6-LPP. The nematode C. elegans represents an exception since, in contrast to another nematode, A. suum, it has a unique zyxin protein belonging to the zyxin subfamily and lost the zyxin-like protein from the ajuba subfamily. This suggests that ZYX-1 fulfills the zyxin-subfamily functions in C. elegans and might compensate for the loss of ajuba-subfamily functions.

Function of ZYX-1 in striated muscle cells

We focused our analysis on ZYX-1 in body-wall muscle cells, where it is localized at dense bodies, M-lines, and nuclei. In C. elegans, muscle adhesion structures (i.e., dense bodies and M-lines) have been suggested not only to play a structural role, but also to serve as signaling platforms within the muscle cell (reviewed in Lecroisey et al., 2007; Qadota and Benian, 2010). Our results suggest that ZYX-1 is involved in these two functions.

ZYX-1 interacts with the dense body proteins ATN-1, ALP-1, and DEB-1, respectively orthologous to vertebrate α-actinin, ALP/enigma, and vinculin (Barstead and Waterston, 1989, 1991; McKeown et al., 2006). This suggests that ZYX-1 participates—although indirectly—in the anchoring of actin filaments to dense bodies via its interaction with these proteins known to cross-link actin filaments. ZYX-1 probably has a functional link with ATN-1, since the loss of ATN-1 leads to ZYX-1 mislocalization and to the modification of the dynamics of ZYX-1 at dense bodies. In addition, loss of either zyx-1 or atn-1 function in the dystrophic dys-1; hlih-1 mutants leads to a reduction of muscle degeneration, and atn-1 and zyx-1 loss-of-function mutants exhibit the same body-bending phenotype (Moulder et al., 2010; Nahabedian et al., 2012).
ZYX-1 was found not to directly interact with the C-terminal domain of DYS-1. However, our results indicate that the function of ZYX-1 may be linked to the function of DYS-1. It is therefore interesting to note that, like ZYX-1, the C-terminal domain of DYS-1 interacts with DEB-1 (our unpublished results). The DYS-1 protein is abundantly expressed in striated body-wall muscles and localizes in broad bands overlapping actin containing thin filaments, which are anchored at dense bodies (our unpublished results and Supplemental Figure S2). In addition, the localization of both DYS-1 and ZYX-1 partially overlaps with the dense body protein DEB-1 (Supplemental Figure S2). Thus ZYX-1 and DYS-1 may be physically linked at dense bodies through their common binding partner DEB-1.

No interaction was detected between ZYX-1 and UNC-112, PAT-4, PAT-6, or UNC-97. These four conserved proteins form a complex that is directly involved in the anchorage of dense bodies and M-lines to the extracellular matrix (Qadota and Benian, 2010). Consequently, ZYX-1 may not directly participate in the adhesive function to the extracellular matrix of these two sarcomeric structures.

A signaling function for the ZYX-1 protein within the muscle cell is suggested by its interaction with 1) UIG-1 (Hikita et al., 2005), a Cdc42-specific guanine nucleotide exchange factor (GEF), suggesting participation of ZYX-1 in Cdc42 signaling during sarcomere maintenance (in part, participation of ZYX-1 in sarcomeric integrin attachment complex maintenance was recently proposed; Etheridge et al., 2012); 2) LIM-8 and LIM-9 (FHL), two other LIM proteins of M-lines both binding UNC-97 (PINCH; Qadota and Benian, 2010), providing a basis for a potential mechanotransducing function in muscle cells as described for zyxin in smooth muscles and nonmuscle cells (Cattaruzza et al., 2004; Hirata et al., 2008; Wolferson et al., 2011), and 3) SCPL-1, a CTD-type phosphatase, which itself interacts with the giant protein UNC-89 (obscurin; Qadota et al., 2008; Xiong et al., 2009).

Our FRAP experiments also agree with a signaling function for ZYX-1. Indeed, in C. elegans muscle, ZYX-1 seems to shuttle between adhesion complexes (i.e., dense bodies and M-lines) and the nucleus, in accordance with observations of vertebrate zyxin shuttling (Nix and Beckerle, 1997; Nix et al., 2001; Wang and Gilmore, 2003; Hervy et al., 2006). In addition, gold beads observed by immuno–electron microscopy in the cytoplasm between the dense body and the nucleus may correspond to staining of shuttling ZYX-1–GFP proteins (Figure 5I).

Previous studies using FRAP experiments on C. elegans body-wall muscle cells suggested that the exchange rates of proteins may reflect the position of the corresponding protein within muscle adhesion structures, peripheral proteins like T03G6.3 or UNC-95 being more dynamic than central proteins, providing a more solid point of anchorage, like UNC-112 (Ghosh and Hope, 2010). The high rate of replacement observed in our experiments strongly suggests localization of ZYX-1–GFP at the periphery of sarcomeric adhesion structures. High dynamics and mobility were also reported for vertebrate zyxin, suggesting that this protein is continuously and rapidly (within seconds) recruited from the cytosol into focal adhesions and able to “hop” between adjacent focal adhesions (Welman et al., 2010).

Differential involvement of the ZYX-1a and ZYX-1b isoforms in dystrophin-dependent muscle degeneration

We showed that the loss of function, as well as overexpression, of the zyx-1 gene reduced dystrophin-dependent muscle degeneration. High dynamics and mobility were also reported for vertebrate zyxin, suggesting that this protein is continuously and rapidly (within seconds) recruited from the cytosol into focal adhesions and able to “hop” between adjacent focal adhesions (Welman et al., 2010).

FIGURE 9: Expression of isoform-specific zyx-1:ha transgenes in wild-type worms. (A) Transgenic worms expressing the pKG83 zyx-1::ha transgene encoding the short ZYX-1b isoform. The ZYX-1b–HA fusion protein is detected by the use of an antibody directed against the HA tag in muscle cells with a subcellular localization restricted to dense bodies (empty arrowheads) and M-lines (chevrons), and in cell bodies (filled arrows) and axons of nerve cells (filled arrowhead). (B) Transgenic worms expressing the pKG82 zyx-1a::ha transgene encoding the ZYX-1a isoform. The ZYX-1a–HA fusion is detected in muscle cells with a subcellular localizationrestricted to dense bodies (open arrowheads). Scale bar, 5 μm for both images. (C) Quantification of muscle degeneration in the dys-1(cx18); hlh-1(cc561ts) zyx-1(gk190) triple mutant and in the triple mutant overexpressing isoform-specific zyx-1 transgenes (pKG82 and pKG83). Muscle degeneration is normalized, as in Figure 8, to that of the dys-1(cx18); hlh-1(cc561ts) double mutant set at 100%. Levels of muscle degeneration were compared between strains linked by brackets, and significant differences are indicated by asterisks (**p < 0.01; ***p < 0.001). Statistical tests were performed with Mann–Whitney test.
degeneration. This reveals a dual and paradoxical function of ZYX-1 in the dystrophic dys-1(cx18); hlh-1(cc561) genetic context. Previous examples were reported in which the same C. elegans muscle phenotypes can be obtained by loss or gain of function: unc-96 (Mercer et al., 2006; Gadota et al., 2007), unc-45 (Barral et al., 1998; Landsverk et al., 2007), and mel-26 and mel-1 (Wilson et al., 2012).

The zyx-1 gene produces at least two isoforms, a long, ZYX-1a, and a short, ZYX-1b, isoform, which are differentially involved in dystrophin-dependent muscle degeneration. We propose that their functional domains dictate their different roles in muscle degeneration. LIM domains in vertebrate zyxins were shown to be essential for targeting the protein to focal adhesions and stress fibers. PRRs, α-actinin and Ena/Vasp–binding sites located in the N-terminal region, can independently direct the protein to the nucleus, whereas the NES is required to export zyxin from the nucleus; however, at steady state, no zyxin is detected in cell nuclei (Nix et al., 2001; Hoffman et al., 2012).

We hypothesized that in C. elegans muscle cells, the LIM domains would have a mechanical function to stabilize dense bodies and M-lines via interactions with several components of these structures. The N-terminal region, present only in the long, ZYX-1a isoform, would have a signaling function, sensing cytoplasmic stress such as disorganized sarcomeres, and, once within the nucleus, would activate transcription of genes involved in repair of the damage and if necessary, induce a death signal. This hypothesis would explain why loss and gain of function of the zyx-1 gene in dystrophic worms are both beneficial for muscles.

In the case of zyx-1 loss of function, the absence of the ZYX-1a isoform would prevent the induction of a death signal. Of interest, dystrophic dys-1(cx18); hlh-1(cc561) double mutants overexpressing either the full-length ZYX-1a protein or the N-terminal domain of the ZYX-1a isoform lacking the LIM-domains are not viable (our unpublished results), arguing for the presence of a sequence in the N-terminal region able to induce a death response. The overexpression of the N-terminal region of vertebrate zyxin was also shown to be lethal in cultured cells (Nix et al., 2001). A death signal or survival function of zyxin was reported in cells subjected to various stresses (Cerisano et al., 2004; Kato et al., 2005; Hery et al., 2010). Although there is no evidence for a direct binding of LIM proteins to DNA (Li et al., 2012), vertebrate zyxin has been shown to interact with transcription factors such as ZNF384 and ZHX1 (Yamada et al., 2003; Janssen and Marynen, 2006). In C. elegans, the ZYX-1a protein might modify gene expression through an interaction with transcription factors involved in the stress-induced gene expression.

In the case of the overexpression of both ZYX-1 isoforms in the muscle of dystrophic worms, the large amounts of LIM domains would stabilize dense bodies and M-lines, thereby reducing the ZYX-1a death signal. LIM domains were described to act as negative regulators of zyxin–VASP complexes by intramolecular interactions between head and tail of the protein, preventing subsequent binding to other partners (Moody et al., 2009). Thus LIM domains of the very abundant short, ZYX-1b isoform could also interact with those of the long isoform, forming a heterodimer, and could exhibit a dominant-negative effect by inhibiting the signaling function of the ZYX-1a isoform. Accordingly, a dominant-negative role of the LIM domains has been suggested for zyxin function in cell–cell adhesion (Hansen and Beckerle, 2006).

Zyxin, cell survival, and muscle pathologies

Members of the zyxin family were suggested to act as sensors at cell adhesion sites and to serve as putative transcriptional coregulators in different cell survival–signaling processes. In humans, several mutations affecting genes encoding LIM proteins, most notably the FHL-1 and ALP-1 proteins, cause muscular dystrophies (Guenneau et al., 2009; Ohsawa et al., 2011; reviewed in Schessl et al., 2011). However, none of the members of the zyxin family has been associated with a human myopathy. In C. elegans, the genetic inactivation of the zyx-1 gene does not cause any obvious structural muscle phenotype, but the loss of the ZYX-1 protein is beneficial to dystrophin-dependent muscle degeneration, thus suggesting for the first time that this protein actively contributes to the muscle degenerative process. With regard to our results, it would be of great interest to analyze the potential contribution of zyxin-family proteins to dystrophin-dependent muscle degeneration in mammalian models for DMD to establish whether targeting of zyxin proteins would be effective strategies for treatment of DMD.

MATERIALS AND METHODS

C. elegans strains

C. elegans strains were cultured as described (Brenner, 1974) and grown at 15°C on OP50 bacteria. The N2 Bristol strain was used as the wild-type control. The PD4613 hlih-1(cc561ts) strain (Harfe et al., 1998) was obtained from B. D. Harfe (University of Florida, Gainesville, FL) and A. Fire (Stanford University School of Medicine, Stanford, CA). The LS292 dys-1(cx18) strain was described in Bassou et al. (1999), the LS587 dys-1(cx18); hlih-1(cc561) and the LS396 dyc-1(cx32) strains were described in Gieseler et al. (2000), the VC299 zyx-1(gk190), RB1812 atrn-1(ok84), RB978 uig-1(ok884), VC654 lim-8(ok941), VC209 lim-9(gk106), and VC612 scpl-1(gk283) strains were obtained from the Caenorhabditis Genetic Center (University of Minnesota, St. Paul, MN), and the alp-1(tm1377) allele was obtained from the Mitani laboratory at the Tokyo Women’s Medical University School of Medicine (Tokyo, Japan). Classic genetics methods were used to construct double and triple mutants: LS898 hlih-1(cc561) zyx-1(gk190), LS901 dys-1(cx18); hlih-1(cc561); atrn-1(ok84), LS925 dys-1(cx18); zyx-1(gk190), and LS936 dys-1(cx18); hlih-1(cc561) zyx-1(gk190). The reference transgenic strains presented in this study are LS770 pKG001(zyx-1::gfp); pCFJ, LS918 pKG001(zyx-1::gfp); pRF4; atrn-1(ok84), LS1028 cxs19(pK001g zyx-1::gfp); pKP13, LS1128 pKG82(zyx-1a::HA); pCFJ(Punc-122::gfp), LS1130 pKG83(zyx-1b::ha), pCFJ(Punc-122::gfp), LS1056 cxs19(pKG001 gzyx-1::gfp); pKP13; dys-1(cx18); hlh-1(cc561); LS1150 pKG106 (zyx-1::ha); pCFJ(Punc-122::gfp), LS1176 pKG106(zyx-1::ha); pCFJ(Punc-122::gfp); dys-1(cx18); hlih-1(cc561) zyx-1(gk190), and KAG126 pKG82(zyx-1a::ha); pCFJ(Punc-122::gfp); dys-1(cx18); hlih-1(cc561) zyx-1(gk190).

Sequence comparison and phylogenetic analyses

Human zyxin-family member sequences were retrieved from UniProt (www.uniprot.org). They were aligned using MUSCLE, version 3.7 (Edgar, 2004), and used as seed for a PsiBLAST (Altschul et al., 1997) search against RefSeq (www.ncbi.nlm.nih.gov/refseq/). Sequence comparison and phylogenetic analyses were performed using CLUSTAL W (Thompson et al., 1994). In total, 305 proteins were used as input sequences, including human, mouse, rat, and C. elegans zyxin-family members.

This procedure was repeated to find zyxin-family proteins in the proteomes of D. rerio (RefSeq), B. floridae (UniProt), A. suum (WormBase, version 233), D. melanogaster (RefSeq), and C. gigas (http://gigadb.org/pacific_oyster/). A psuedogene of GS 19714, as suggested by
its increased substitution rate and by the absence of hits when using tBLASTn in the National Center for Biotechnology Information Expressed Sequence Tag database.

The multiple alignment of all zyxin sequences was computed using MUSCLE and refined using BMGE (Crisculo and Gribaldo, 2010). Maximum-likelihood tree estimation and parametric bootstrap were performed using RAxML, version 7.2 (Stamatakis, 2006), under model PROTCATLG, with 100 bootstrap replicates.

zyx-1 constructs and transgenesis

The different zyx-1 constructs are presented in Figure 1. The plasmid pKG001 was described in Lecroisey et al. (2008). Briefly, this plasmid contains a 16,928-base pair Pstl–NcoI fragment of cosmid F42G4 encompassing the genomic sequence of the zyx-1 gene cloned into the PstI–Mscl sites of pPD95.75 plasmid (kindly provided by A. Fire) in frame with the gfp-encoding sequence. This fragment starts 4171 base pairs upstream of the predicted initiation codon of the zyx-1a isoform–containing promoter sequences and ends at the NcoI site within exon 9, thus lacking the coding sequences of the 50 most C-terminal amino acids of the ZYX-1 protein (including the 39 C-terminal amino acids of the third LIM domain).

The pKG82 construct was obtained in different steps. 1) The pPD118.20 plasmid (kindly provided by A. Fire) was digested with AgeI and EcoRI to remove the GFP-coding sequence. The resulting plasmid was named pKG74. 2) The zyx-1a cDNA was amplified by PCR on the yk247e1 zyx-1a cDNA clone (kindly provided by Y. Kohara, National Institute of Genetics, Mishima, Japan), using forward primer tta agc tag cgc cat gtg taa tcc cagc (both primers using forward primer tta agc tag cat gag taa agg aga aga ac) and reverse primer tta agc tag cgc cat gtg taa tcc cagc (both primers containing an Nhel site) and inserted into the Nhel site of pKG98, resulting in plasmid pKG103. 3) The Nrlu–Apal fragment of pKG82 was replaced by the Nrlu–Apal fragment from pKG103 (corresponding to the 3′ genomic sequence including introns 6–8, as well as exons 6–10 with the HA tag and GFP fused in frame at the end of exon 10. The resulting plasmid was named pKG106 (Figure 1).

The constructs of interest were injected into gonads of young adult wild-type or zyx-1(gk190) mutant animals using standard procedures (Mello and Fire, 1995) at a concentration of 10 ng/μl, along with the marker pCFJ68 (Punc-122::gfp) plasmid (Addgene, Cambridge, MA; expressed in coelomocytes) at a concentration of 25 ng/μl; pKG001 was co-injected with the marker pKP13 (100 ng/μl) or pRF4 (150 ng/μl); Ségala et al., 1995; Mello and Fire, 1995). At least three independent stable transgenic lines were generated for each transgene. The pKG001 transgene was integrated into the genome by ultraviolet irradiation of L4 larvae at 0015 J/cm². Fluorescent animals of the F1 and F2 generation were individually grown, and animals homozygous for the integrated transgene were selected in the F3 generation. Classic genetic procedures were used to introduce the pKG001 and pKG106 transgenes into the dys-1(cx18); hih-1(cc561) or atm-1(ok84) mutant background or the pKG82, pKG83 transgenes into the dys-1(cx18); hih-1(cc561) zyx-1 mutant background.

Immunostaining and fluorescence microscopy

Worms were fixed by the constant-spring method unless stated otherwise (Benian et al., 1996). Transgenic zyx-1::gfp worms were observed either directly after fixation on a fluorescence Zeiss LSM510 microscope (Carl Zeiss, Jena, Germany) or stained with a GFP rabbit antibody (1/200; Invitrogen, Carlsbad, CA). Anti-rabbit Alexa 488 (Invitrogen) secondary antibody was used at 1/1000 dilution. Transgenic zyx-1::ha worms were stained with a HA primary mouse antibody (1/100; Santa Cruz Biotechnology, Santa Cruz, CA) and then secondary anti-mouse Alexa 548 (1/1000; Invitrogen).

A ZYX-1 monoclonal antibody was produced by BIOTEM (Apprieu, France) against the peptide CALCSKVPVPGEKESRV (part of the first three of the LiM domain (Figure 1), amino acids 531–550 in exon 9 of the ZYX-1-a isoform (F42G4.3a), or amino acids 127–146 in exon 4 of the ZYX-1-b isoform (F42G4.3b). This antibody was used on wild-type worms at a dilution of 1/50. Secondary anti-mouse antibody, conjugated to streptavidin (1/250), and secondary fluorescent-conjugated biotin (1/400; Vector Laboratories, Burlingame, CA) were used to reveal the ZYX-1 antibody staining.

For costaining of ZYX-1–GFP and ATN-1 or DEB-1, a GFP rabbit antibody (1/200; Invitrogen) was used, along with an ATN-1 antibody (MH35 1/200; kindly provided by Pamela Hoppe, Western Michigan University, Kalamazoo, MI) and a DEB-1 antibody (MH24, 1/200; Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA; Francis and Waterston, 1985). A secondary anti-rabbit Alexa 488 (Invitrogen) was used to reveal the GFP rabbit antibody (1/1000). Secondary anti-mouse Alexa 548 (Invitrogen) was used to reveal the MH35 or MH24 (1/1000) staining. Worms were mounted on a glass slide with a coverslip together with 40-μm microbeads (Thermo Scientific, Fremont, CA) and antifading Prolong mounting medium (Invitrogen).

Acquisition of images was done on a Zeiss LSM510 confocal microscope using a 63x oil immersion objective with the LSM software. Image postprocessing was performed in ImageJ (National Institutes of Health, Bethesda, MD), with the Grays LUT in Figure 5, A–C and E–G, and Fire LUT in Figure 5, D and H.

For immunolocalization of ZYX-1 interactors, wild-type and zyx-1(gk190) worms were fixed by the Nonet method (Nonet et al., 1993), and antibodies to the following proteins were used: ATN-1 (MH35, 1/200 dilution), ALP-1 (B74 at 1/100; Han and Beckerle, 2009), DEB-1 (MH24, dilution 1/200), DYC-1 (dilution 1/20;
Lecroisey et al., 2008), UIG-1 (dilution 1/100; kindly provided by Kozo Kaibuchi, Nagoya University, Nagoya, Japan), LIM-8 (dilution 1/100; Qadota et al., 2007), LIM-9 (dilution 1/100; Qadota et al., 2007), and SCPL-1 antibodies (Benian-17 at 1/100 dilution; Qadota et al., 2008). As markers of M-lines and dense bodies, we used a UNC-95 antibody (Benian-13 at 1/100; Qadota et al., 2007). Wild-type, zyx-1(ok190), atn-1(ok84), alp-1(tm1137), dyc-1(cx32), uig-1(ok884), lim-8(ok941), lim-9(ok106), and scpl-1(ok1080) worms were fixed by the constant-spring method (Benian et al., 1996) to determine the effect of these mutations on ZYX-1 localization, as detected by a ZYX-1 antibody (at 1/100; this study). Secondary antibodies, purchased from Invitrogen, were anti-rabbit Alexa 488, anti-mouse Alexa 594, and anti-rat Alexa 594, each used at 1/200 dilution. Stained samples were mounted on a glass slide with a coverslip containing mounting solution (20 mM Tris, pH 8.0, 0.2 M 1,4-diazabicyclo(2.2.2)octane, and 90% glycerol). Images were captured at room temperature with a Zeiss confocal system (LSM510) equipped with an Axiovert 100M microscope and an Apochromat 63×/1.4 oil objective in 2.5× zoom mode. The color balances of the images were adjusted by using Photoshop (Adobe, San Jose, CA).

Electron microscopy
Electron microscopy analysis was performed on zyx-1::gfp worms containing the pKG001 transgene fixed by high-pressure freezing as previously described (Liegeois et al., 2007). The next steps were processed as previously described (Lecroisey et al., 2008).

Fluorescence recovery after photobleaching experiments
FRAP was performed on transgenic wild-type or atn-1(ok84) worms carrying the zyx-1::gfp (pKG001) transgene immobilized by capillarity between slide and large coverslip with 20 μl of M9 buffer under a Leica spectral confocal microscope (TCS SP5 AOBSDM6000; Leica Microsystems, Wetzlar, Germany). Five images were taken before bleaching, and then the region of interest was bleached with the 488-nm laser at full power; subsequent scans were taken at 5% of full laser power. Sarcomeric zones were bleached 20 times and nuclei 8 times to reduce significantly the amount of fluorescence. For each bleaching experiment, 20 frames were acquired every 0.5 s, followed by 30 frames acquired every 2 s. Ten bleaching experiments were performed on sarcomeric zones of zyx-1::gfp expressing wild-type or atn-1(ok84) worms and four on muscle nuclei of wild-type zyx-1::gfp expressing worms. One relevant experiment performed on zyx-1::gfp expressing wild-type worms was presented for sarcomeric zones and nucleus bleaching experiments in Figure 6. The five most representative data sets of sarcomeric zone bleaching experiments on zyx-1::gfp expressing wild-type worms and atn-1(ok84) mutants are presented in Figure 7. Fluorescence intensity was measured using ImageJ software and analyzed using Igor (WaveMetrics, Portland, OR) software. Relative fluorescence intensity (RFI) was calculated as described in Ghosh and Hope (2010). On the y-axis, 1.0 represents the RFI of the bleached zone before bleaching steps. Time origin corresponds to the first acquisition after bleaching steps, and RFI was normalized to be zero at t = 0. Half-time recoveries and mobile fractions were calculated from the fitted curves as described (Ghosh and Hope, 2010). Statistical analyses were based on a Mann–Whitney test carried out using Excel Stat software (Microsoft, Redmond, WA). The p values for the tested data sets are presented below Figure 7N in brackets.

Yeast two-hybrid assay and screening
The yk247te1 zyx-1a cDNA was amplified using T3 and T7 primers, blunted by using the T4 DNA polymerase (New England BioLabs, Ipswich, MA), digested by SacI, and cloned into the SacI/Smal sites of pBluescript (SK+), resulting in the plasmid named pBSC-zyx-1cDNA. The ZYX-1a bait plasmid (encoding amino acids 68–603 of ZYX-1) was obtained by cloning an AgeI–SalI zyx-1 cDNA fragment from pBSC-zyx-1cDNA into the Ncol–SalI sites of the pAS2-1 bait plasmid (Clontech, Palo Alto, CA), resulting in plasmid pAS2-1-zyx-1. The construction of prey plasmids encoding the C-terminal domain of DYS-1, the DYC-1 protein (pSEB), and ZYX-1a (pSNXX, amino acids 68–603) was described in Lecroisey et al. (2008). The ZYX-1a prey plasmid deleted for the three LIM domains (encoding amino acids 68–265 of ZYX-1a) was obtained by cloning an Ndel–Xhol zyx-1 cDNA fragment from the pAS2-12-zyx-1 plasmid into the Smal–Xhol sites of the pACT2 prey plasmid (Clontech), resulting in plasmid pACT2-zyx-1SNX. The ZYX-1 prey plasmid encoding only the three LIM domains (amino acids 265–603 of ZYX-1a) was obtained by cloning an Ndel–Xhol zyx-1 cDNA fragment from the pAS2-1-zyx-1 plasmid into the Xhol site of the pAct2 prey plasmid (Clontech), resulting in plasmid pACT2-zyx-1XX. Transformations of yeasts were performed as described (Lecroisey et al., 2008). The collection of M-line and dense body prey proteins was described in Qadota et al. (2007, 2008) and Xiong et al. (2009). All two-hybrid assays were conducted using methods described in Mackinnon et al. (2002).

RNA interference
The pBSC-zyx-1cDNA plasmid was digested with EcoRI. The 5′ cDNA EcoRI fragment containing 42 base pairs of the 5′ UTR and ZYX-1a coding sequence (amino acids 1–303) and the 3′ cDNA EcoRI fragment containing ZYX-1 coding sequences (amino acids 509–603 of ZYX-1a) and 257 base pairs of the 3′ UTR were cloned into the EcoRI site of the RNAi feeding vector L4440. The 5′ and 3′ sequence–targeting constructs, named pKG116 and pKG117, respectively, were transformed into HT115 Escherichia coli. RNAi was performed by feeding wild-type worms or dys-1(cx18); hli-1(cx561ts) mutants with double-strand RNA–producing E. coli (Timmons et al., 2001). Negative and positive control experiments were performed, respectively, with the empty L4440 vector and a pos-1 transcript–targeting RNAi clone (Ahringer library; Kamath et al., 2003).

Quantification of muscle degeneration
Animals were fixed and stained 3 d after they reached the L4 stage. Fixation and phalloidin–rhodamine staining (FluoProbes; Interchim, San Pedro, CA) were performed as described (Waterston et al., 1984). Stained body-wall muscles were observed using a Zeiss Axioskop microscope. Only the two most visible quadrants of body-wall muscles in each animal were quantified (47 or 48 cells per animal), and 20 animals were scored for each genotype. The dys-1(cx18); hli-1(cx561ts) dystrophic mutant present six to nine degenerated muscle cells, corresponding to 12–18% of total muscle cells (Gieseler et al., 2000). We normalized the number of degenerated muscle cells in this double mutant to 100% to compare to other genetic backgrounds. Statistical analyses were carried out between the strain of interest compared with the relative dys-1; hli-1 strain (unless stated otherwise using brackets) and based on a Mann–Whitney test carried out using Excel Stat software. Significant differences between tested strains are indicated by asterisks (*p < 0.05; **p < 0.01; ***p < 0.001).

Reverse transcription-PCR and RT-qPCR analysis
Total RNA was extracted from worms fed with OP50 or HT115 E. coli. Four-day-old worms were harvested in M9 and washed twice in
M9 and once in RNase-free distilled water. Two volumes of TRIzol (Invitrogen) were added to one volume of pelleted worms and frozen at −80°C overnight. While unfreezing, samples were vortexed for 10 min, 0.2 volume of chloroform was added, and they were again vortexed for 1 min. After 3 min, samples were centrifuged. Total RNA was extracted with the RNeasy Mini Binding Kit (Qiagen, Valencia, CA). RNA from each extraction was DNase treated (Invitrogen) and reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) following provider’s instructions. PCR were carried out on 1 μl of cDNA with the following primers: gta atc aga cag tgg ctg tga g and gta att tgc tgc tga cga ggt tgc for amplification of zyx-1a cDNA (Figure 8C); ctt cgg tcc tgc tgc ctc tct and tct tac gca gac gtc gtc for amplification of zyx-1a cDNA (Figure 8C); and aac tat ggc gcc tga aag and ttt gcc gaa gcc cac gag for amplification of zyx-1b cDNA. PCR was stopped after 25 cycles (a 5-μl sample was removed and frozen) and run again up to 35 cycles. All 25th- and 35th-cycle PCR products were loaded on a 1.5% agarose gel. Acquisitions were processed with Image Lab Bio-Rad Software.

For RT-qPCRs total RNA from wild-type worms were extracted using the TRIzol/chloroform (Merck, Darmstadt, Germany) method. The RNeasy Mini Binding Kit was used to clean up the extracts, and 3 μg were treated with DNase (DNase I, Amp Grade; Invitrogen). A 10-ng amount of total RNA from three independent extractions was reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad) and amplified in a CFX96 Realtime System C1000 Thermal Cycler (Bio-Rad) using the iQ SYBR Green SuperMix (Bio-Rad) and 1) the zyx-1a–specific forward primer act ccc atc cgg aga gag act and reverse primer primer cgc gct gta gtg ccg aag or 2) the zyx-1b–specific forward primer gag aga aac cac gcc ttc tta and reverse primer primer ttc tgt gtc ggc cat agt.

Western blot analysis

To detect ZYX-1–GFP fusion proteins from transgenic worms, extracts were obtained from cultured worms harvested in M9, pelleted, frozen at −80°C, and boiled in Laemmli buffer. Electrophoresis migration was carried out in a Bio-Rad MiniProtein system using 4–10% gradient gels. After transferral of the proteins on a Protan rose gel. Acquisitions were processed with Image Lab Bio-Rad Software.

References

ACKNOWLEDGMENTS

We thank Yuji Kohara for the gift of the zyx-1 cDNA clone, B. D. Harfe and A. Fire for the hll-1(unc561ts) strain, A. Fire for GFP-encoding plasmids, Pamela Hoppe for help with FRAP data analysis, and Samuel Leroy for help with FRAP software. The MH24 antibody developed by R. H. Waterston was obtained from the Developmental Studies Hybridoma Bank (developed under the auspices of the National Institute of Child Health and Human Development and maintained by the Department of Biological Sciences, University of Iowa, Iowa City, IA). Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. The alp-1(tem1137) mutant strain was provided by the Mitani laboratory at the Tokyo Women’s Medical University School of Medicine (Tokyo, Japan). Electron microscopy was performed at the Centre d’Imagerie of the Institut Génétique Biologique Moléculaire Cellulaire (Illkirch, France) with the gracious help of Yannick Schwab. FRAP experiments were performed at the PLATIM IFR128 microscope platform at the Ecole Normale Supérieure Lyon (Lyon, France) with the gracious help of Christophe Chamot. Confocal microscopy was performed at the Center Technologique des Microstructures, Université Claude Bernard Lyon 1 (Villeurbanne, France).

This project was supported by Agence National de la Recherche Grant DUCHENNE ELEGANS 07 MRAR 005 01 and the European Muscle Development Network (MYORES). C.L. and N.B. were funded by Ph.D. fellowships from the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche, and C.L. by the Fondation pour la Recherche Médicale en France. H.Q. and G.M.B. were supported at first by National Institutes of Health Grant R01AR052133 and later by American Heart Association Grant 11GRNT7820000.

