About this item:

721 Views | 735 Downloads

Author Notes:

Center for the Study of Human Health, Emory University, 550 Asbury Circle, Candler Library 107, Atlanta, GA 30322 USA Avni Hajdari, Phone: +381 38 249 872, Fax: +381 38 226 104, Email:avni.hajdari@uni-pr.edu

BP, KN, and AH carried out the study; AH, CLQ and BM designed the experiments and supervised the work; AH, CLQ and BM wrote the manuscript; All authors read and approved the final manuscript.

The authors declare that they have no competing interests.

Thanks to M. Smeltzer and A. Horswill for providing S. aureus strains UAMS-1 and LAC, respectively.

The authors declare that they have received no funding for the research reported.

Subjects:

Research Funding:

The following reagent was provided by the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) for distribution by BEI Resources, NIAID, NIH: Staphylococcus aureus, Strain 95938, NR-46071.

Keywords:

  • Essential oil
  • Limonene
  • MRSA
  • Natural variability
  • Staphylococcus aureus
  • Terebinth

Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo

Tools:

Journal Title:

BMC Complementary and Alternative Medicine

Volume:

Volume 16, Number 1

Publisher:

, Pages 147-147

Type of Work:

Article | Final Publisher PDF

Abstract:

Background: Plant material from different organs of Pistacia terebinthus L., (Anacardiaceae) were collected in Kosovo with aim to analyze the chemical variability of the essential oils among native populations and to test them for potential antibacterial activity against Staphylococcus aureus. Methods: Essential oils obtained from leaves, pedicels, fruits and galls were analyzed by GC-FID and GC/MS. Minimum inhibitory concentration (MIC) against three clinically relevant strains of S. aureus (NRS385, LAC and UAMS-1) were used to evaluate the antibacterial activity of essential oils. Results: In total, 33 different compounds were identified. The main constituents were α-pinene (12.58-66.29 %), D-limonene (13.95-46.29 %), β-ocimene (0.03-40.49 %), β-pinene (2.63-20.47 %), sabinene (0.00-5.61 %) and (Z)-β-ocimene (0.00-44.85 %). Antibacterial testing of the essential oils against three clinical isolates of S. aureus revealed that seven of the eight samples had some activity at the concentration range tested (0.04-0.512 % v/v). The gall tissues from both sites produced the highest yield of essential oil (3.24 and 6 %), and both exhibited growth inhibitory activity against S. aureus. The most bioactive essential oils, which exhibited MIC90 values ranging from 0.032-0.128 % v/v, obtained from the fruits of the Ura e Shejtë collection site. Likewise, the leaf and pedicel essential oil from the same site was highly active with MIC90 values of 0.064-0.128 and 0.032-0.256 % v/v, respectively. Conclusions: Principle Component Analyses demonstrated that there is a variation in the chemical composition of essential oil depending on the plant organs from which essential oil are obtained and the geographical origin of the plant populations. The highest variability regarding the chemical composition of essential oil was found between oils obtained from different organs originating from the Prizren site. The MIC90 activity of Pistacia terebinthus was on par or superior compared with Tea Tree Oil control (0.128 % v/v), suggesting that essential oils from this species may have some potential for development as an antibacterial agent for S. aureus infections.

Copyright information:

© 2016 The Author(s).

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote