
Roy S. Herbst, Yale University
David R. Gandara, University of California Davis
Fred R. Hirsch, University of Colorado
Mary W. Redman, Fred Hutchinson Cancer Research Center
Michael LeBlanc, Fred Hutchinson Cancer Research Center
Philip C. Mack, University of California Davis
Lawrence H. Schwartz, Columbia University
Everett Vokes, University of Chicago
Suresh Ramalingam, Emory University
Jeffrey D. Bradley, Washington University in St. Louis

Only first 10 authors above; see publication for full author list.

Journal Title: Clinical Cancer Research
Volume: Volume 21, Number 7
Publisher: American Association for Cancer Research | 2015-04-01, Pages 1514-1524
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1158/1078-0432.CCR-13-3473
Permanent URL: https://pid.emory.edu/ark:/25593/rn188

Final published version: http://dx.doi.org/10.1158/1078-0432.CCR-13-3473

Copyright information:
©2015 American Association for Cancer Research.

Accessed September 27, 2019 12:17 PM EDT
Lung Master Protocol (Lung-MAP)—A Biomarker-Driven Protocol for Accelerating Development of Therapies for Squamous Cell Lung Cancer: SWOG S1400

Roy S. Herbst¹, David R. Gandara², Fred R. Hirsch³, Mary W. Redman⁴, Michael LeBlanc⁴, Philip C. Mack², Lawrence H. Schwartz⁵, Everett Vokes⁶, Suresh S. Ramalingam⁷, Jeffrey D. Bradley⁸, Dana Sparks⁹, Yang Zhou¹, Crystal Miwa⁹, Vincent A. Miller¹⁰, Roman Yelensky¹⁰, Yali Li¹⁰, Jeff D. Allen¹¹, Ellen V. Sigal¹¹, David Wholley¹², Everett Vokes⁶, Suresh S. Ramalingam⁷, Jeffrey D. Bradley⁸, Dana Sparks⁹, Yang Zhou¹, Crystal Miwa⁹, Vincent A. Miller¹⁰, Roman Yelensky¹⁰, Yali Li¹⁰, Jeff D. Allen¹¹, Ellen V. Sigal¹¹, David Wholley¹², Caroline C. Sigman¹³, Gideon M. Blumenthal¹⁴, Shakun Malik¹⁵, Gary J. Kelloff¹⁶, Jeffrey S. Abrams¹⁷, Charles D. Blanke¹⁸, and Vassiliki A. Papadimitrakopoulou¹⁹

¹Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut ²University of California Davis Cancer Center, Sacramento, California ³University of Colorado Health Sciences Center, Department of Medical Oncology, Aurora, Colorado ⁴SWOG Statistical Center; Fred Hutchinson Cancer Research Center, Seattle, Washington ⁵Columbia University Medical College, Department of Radiology, New York, New York ⁶University of Chicago Medicine and Biologic Sciences, Department of Medicine, Chicago, Illinois ⁷Emory University, Department of Hematology and Medical Oncology, Atlanta, Georgia ⁸Washington University School of Medicine, Radiation Oncology, St. Louis, Missouri ⁹SWOG Operations Office, San Antonio, Texas ¹⁰Foundation Medicine, Cambridge, Massachusetts ¹¹Friends of Cancer Research, Washington, DC ¹²Foundation for the National Institutes of Health, Bethesda, Maryland ¹³CCS Associates, Mountain View, California ¹⁴Center for Drug Evaluation and Research, US Food & Drug Administration, Silver Spring, Maryland ¹⁵Center for Cancer Research, National Cancer Institute, Bethesda, Maryland ¹⁶Cancer Imaging Program, National Cancer Institute, Bethesda, Maryland ¹⁷Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland ¹⁸SWOG Group Chair’s Office; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon ¹⁹University of Texas MD Anderson Cancer Center, Houston, Texas

Abstract

Corresponding Author: Roy S. Herbst, Yale School of Medicine, 333 Cedar Street, PO Box 208028, New Haven, CT 06520-8028. Phone: 203-785-6879; Fax: 203-785-4116; roy.herbst@yale.edu. R.S. Herbst, D.R. Gandara, F.R. Hirsch, M.W. Redman, and V.A. Papadimitrakopoulou contributed equally to this article.

Disclosure of Potential Conflicts of Interest

R.S. Herbst is a consultant/advisory board member for Biothera, Diatech, Eli Lilly, Genentech, Merck, N-of-One, and Pfizer. F.R. Hirsch is a consultant/advisory board member for AstraZeneca and Genentech. L.H. Schwartz is a consultant/advisory board member for Pfizer and is on the endpoint analysis committee for Celgene, ICON, and Novartis. S.S. Ramalingam is a consultant/advisory board member for AstraZeneca, AstraZeneca, and Genentech. J.D. Bradley reports receiving a commercial research grant from Varian Medical Systems. V.A. Miller, R. Yelensky, and Y. Li are employees of and have ownership interest in Foundation Medicine. C.C. Sigman is an employee of CCS Associates. V.A. Papadimitrakopoulou is a consultant/advisory board member for Amgen, AstraZeneca, Biothera, Clovis Oncology, Eli Lilly, Genentech, Gensignia Life Sciences, and Janssen. No potential conflicts of interest were disclosed by the other authors.
The Lung Master Protocol (Lung-MAP, S1400) is a groundbreaking clinical trial designed to advance the efficient development of targeted therapies for squamous cell cancer (SCCA) of the lung. There are no approved targeted therapies specific to advanced lung SCCA, although The Cancer Genome Atlas (TCGA) project and similar studies have detected a significant number of somatic gene mutations/amplifications in lung SCCA, some of which are targetable by investigational agents. However, the frequency of these changes is low (5–20%), making recruitment and study conduct challenging in the traditional clinical trial setting. Here we describe our approach to development of a biomarker-driven phase 2/3 multi-substudy “Master Protocol,” employing a common platform (Next Generation DNA Sequencing) to identify actionable molecular abnormalities, followed by randomization to the relevant targeted therapy versus standard of care.

Introduction

Despite dramatic advances over the past decade in understanding the molecular biology of cancer and innovations in drug development technology, translation of these findings into effective cancer treatments remains difficult. The application of modern technologies to study genomic alterations associated with cancer growth and progression has provided for targeted development of new treatment options for patients with specific molecular abnormalities (biomarkers). Particularly, non-small cell lung cancer (NSCLC) is a disease in which a number of molecular targets have been identified (1–3). Great strides have been made in efficient and successful development of molecularly-targeted drugs [e.g., crizotinib, ceritinib, and alectinib for patients bearing anaplastic lymphoma kinase (ALK) fusions (4–7); and epidermal growth factor receptor [EGFR] mutations(3, 8, 9)]. However, developing a potential therapeutic agent from the initial discovery stage through clinical testing and regulatory review still remains a complicated, expensive, and inefficient process. Even rationally developed targeted therapies fail late in development because relevant patient populations were not selected or preliminary data were inadequate (e.g., promising phase 2 results not recapitulated in phase 3) (10). The consequences of this often slow and complicated process is either delay or failure to offer new active drugs to the many desperate patients with lung cancer (or other cancers). However, identifying and accruing biomarker-selected patients to clinical trials is also challenging. This is particularly true for squamous cell carcinoma (SCCA) of NSCLC. Since any putative oncogenic driver in SCCA is rare, screening patients for solitary biomarker-driven studies requires substantial time and tissue with a low chance of enrollment—in fact, serial screening for individual biomarkers to determine eligibility for other trials is not feasible for SCCA patients who have already progressed on standard therapy. Thus, new strategies are essential for matching patients to therapies from which they are most likely to benefit, requiring efficient clinical trial designs for evaluating these therapies, with rapid, multi-biomarker patient evaluation and accelerated drug development timelines (11–13).

Recently, a new trial design has been employed to address these issues (14). This design has two components, screening and treatment. In the screening component, patients are evaluated systematically for the presence of biomarkers of interest. Then, in the treatment component, patients are assigned to substudies with investigational therapies targeting the
biomarkers present in their tumors. This design allows more efficient screening and facilitates the addition of new drugs and biomarkers into the protocol on a rolling basis.

Two categories of studies follow this design (Fig. 1 and Table 1): “Basket” studies examine the effect of specific therapeutic agent(s) on a defined molecular target regardless of the underlying tumor-type. This design facilitates a particular targeted therapeutic strategy (i.e., inhibition of an oncogenically mutated kinase) across multiple cancer types. Examples are the National Cancer Institute’s (NCI’s) Molecular Analysis for Therapy Choice (MATCH) (15) and the Molecular Profiling based Assignment of Cancer Therapeutics (MPACT) trials. The second type, “Umbrella” studies, evaluate multiple targeted therapeutic strategies in a single type of cancer. Examples are Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And molecular Analysis 2 (I-SPY TRIAL 2, I-SPY 2) (16), the FOCUS4 study in advanced colorectal cancer (17), and the phase 2 adaptive randomization design Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) (18) and BATTLE-2 (14, 19) in NSCLC.

The Lung Master Protocol (Lung-MAP) is a recently initiated umbrella trial specifically for patients with advanced lung SCCA. It is built on the principles and approaches of the previously mentioned trials. Particularly, I-SPY 2 established infrastructure for conduct of a Master Protocol [including development of the Master Investigational New Drug application with the US Food and Drug Administration (FDA)] (16), and it has been successful in meeting its objectives of matching drugs with subtypes of breast cancer in which they are most likely to be effective, potentially leading to smaller phase 3 trials in the selected subpopulations (20, 21). BATTLE and BATTLE-2 are direct precursors of Lung-MAP that have been successful in developing strategies to screen patients for and to define biomarkers for optimal patient selection for evaluation of drugs and drug combinations that have shown promise in treatment of NSCLC (18, 19). Although based on concepts developed in I-SPY 2 and the BATTLE trials, Lung-MAP has a different overall strategy. It does not use adaptive randomization to evaluate drug/biomarker combinations and it goes beyond phase 2 development. It is designed to provide a path for FDA-approval of active agents identified in the initial phase 2 study. That is, a drug that is found to be effective in phase 2 will move directly into the phase 3 registration setting, incorporating the patients from phase 2. This will reduce time, resources and patient numbers needed to accomplish the ultimate goal of bringing novel agents to the clinic. Lung-MAP also addresses other unmet needs including applications of broad-based genomic screening in clinical trial settings, and shortened turnaround times to allow effective use of molecular testing in selection of therapy for patients who are progressing rapidly. This Master Protocol mechanism is expected to increase access to genomic screening for SCCA patients, improve definition of genomically defined biomarkers for clinical trial entry for these patients, and decrease time lines for drug-biomarker testing allowing for inclusion of the maximum numbers of otherwise eligible patients (13). The authors hope that this article will increase awareness of Lung-MAP in the research community, allow us to share our experience with other groups looking to launch similar projects, and motivate oncologists to offer Lung-MAP as a treatment option to their eligible patients.
The concept for Lung-MAP was developed jointly in 2012 by the NCI’s Thoracic Malignancy Steering Committee (TMSC) (7) and Friends of Cancer Research (Friends)/Brookings Conference on Clinical Cancer Research (22), and was implemented in June 2014. A key design aspect is inclusion of a biologically driven approach to identify targets building on the NCI funded Cancer Genome Atlas (TCGA) (1, 2). In February 2012, the NCI, including investigators of the TMSC, FDA, European Medicines Agency, and pharmaceutical companies met on the subject of “Strategies for Integrating Biomarkers into Clinical Development of New Therapies for Lung Cancer.” Following that meeting, a TMSC task force was established to develop a series of Lung Cancer Master Protocols. Simultaneously, Friends in conjunction with FDA and NCI initiated a similar effort presented as part of the November 2012 Conference on Clinical Cancer Research hosted by Friends and the Engelberg Center for Health Care Reform at the Brookings Institution and published a white paper which formed the basis for Lung-MAP (22). In March 2013, at a follow-up Friends forum, the decision was made to go forward with the study as a public-private partnership. It brings the different initiatives together, involving the NCI and its Cooperative Group/National Clinical Trials Network (NCTN) infrastructure, the FDA, multiple pharmaceutical companies, Friends, and lung cancer non-profit organizations and patient advocates. The Lung-MAP public–private partnership is being conducted within the NCTN spearheaded by the South West Oncology Group (SWOG). FNIH is the convener of the public-private partnership; Friends and FNIH are members of the project’s Oversight Committees and, together with SWOG, are responsible for project management. The final design for Lung-MAP, including the first five drugs and biomarkers to be evaluated, was announced at the 2013 Friends/Brookings Institution Conference on Clinical Cancer Research on November 7, 2013.

Here we describe the study design, initial selection of drugs and biomarkers, additional translational medicine studies that might be carried out under Lung-MAP, and a further discussion of the challenges and benefits of the Master Protocol design.

Study Design

The overarching goal for this trial is to establish an NCTN mechanism for genomically screening large, clinically well-defined cancer populations and assigning screened patients to substudies within a Master Protocol. These substudies are defined by genotypic alterations (biomarkers) in the tumor paired to drugs that target these alterations. Fig. 2 shows the general schema for Lung-MAP. For screening, patients must have adequate tumor tissue for evaluation from either archival formalin-fixed paraffin-embedded (FFPE) or fresh tumor biopsies; archival tissue must be a tumor block or a minimum of 12 FFPE slides 4–5 microns thick (20 slides preferred). Patients ≥18 years of age, with adequate tissue and pathologically proven advanced-stage lung SCCA (Stage IIIB or IV), without known EGFR mutations or ALK fusions, whose disease has progressed on exactly one first-line platinum-based therapy (or therapy plus radiation treatment) for metastatic lung cancer, and with Zubrod Performance Scores ≤2.0, who have had no prior malignancies except adequately treated basal and squamous cell skin cancers and cervical cancers in situ, treated Stage I/II cancers from which they are in complete remission, or other cancers from which they have been disease-free for at least five years, are evaluated using next generation DNA
sequencing (NGS) along with additional agent-specific molecular assays for the presence of relevant biomarkers. A key factor in the efficiency of the Master Protocol design is rapid turnaround of screening results to establish substudy eligibility (within 10–14 days). Eligible patients are then assigned to substudies based on their biomarkers or to a “non-match” therapy substudy if the patient does not qualify for the biomarker-specific substudies. For enrollment to a substudy, patients must have measurable disease as measured by CT or MRI; if treated for brain metastases, they must have had sufficient time for recovery. They will not have not had within the past 28 days and are not planning to have other cancer therapy while on study; have no EGFR mutations or ALK translocations detected during screening; have recovered fully from drug treatment or surgery for their lung cancer; have adequate organ function and Zubrod Performance Scores ≤2.0, and meet other criteria specific to the substudy to which they are assigned. Within the substudies, patients are randomized to biomarker-driven targeted or standard-of-care (SOC) therapy. In some substudies, targeted therapy plus SOC is compared with SOC. Fig. 3 shows the overall schema with the five initial substudies (four targeted therapies and one non-match therapy), and Table 2 provides details of the initial substudies.

SCCA accounts for approximately 20–35% of lung cancer incidence annually (8, 22–26). Based on this statistic and the widespread availability of the protocol throughout the NCTN, accrual of 500–1,000 patients per year is expected in 4–7 concurrent substudies. New substudies will enter the trial on a rolling basis as substudies close, or relevant drug-biomarker pairs with sufficient proof-of-concept become available. Each substudy functions autonomously, opens and closes independently, and is analyzed independently of the other substudies. The duration estimates for each substudy are based on historical data regarding the prevalence of the associated biomarker among lung SCCA patients. These estimates may be modified as needed based on the actual prevalence among patients accrued to the study using the Lung-MAP specific assays (See Table 3). The duration for each substudy is approximately inversely proportional to prevalence and the accrual is expected to range from 2–7 years through phase 3. Each substudy will require approximately 300–400 patients to complete phase 3.

Patients with tumors bearing more than one relevant biomarker are assigned to a substudy based on a pre-defined algorithm that helps facilitate even enrollment across all substudies. Initially the algorithm will be based on observations in previous studies of lung SCCA relevant to the drugs on study, e.g., the evaluation of 108 tumors by NGS carried out on the Foundation Medicine (FMI) FoundationOne platform (Fig. 3). In this analysis, overlaps of 2.8%, 0.9%, and 2.0% were estimated for the FGFR biomarker with the CDK, PIK3CA, and c-MET biomarkers, respectively; overlaps of 1.9% and 2.8% were estimated for the CDK biomarker with the PIK3CA and c-MET biomarkers, respectively; and overlap of 1.9% was estimated for the PIK3CA and c-MET biomarkers. The algorithm will be modified as needed during the course of Lung-MAP to accommodate the actual prevalence of overlaps observed for the biomarkers on study. A non-match substudy will be open to accrual throughout the trial, ensuring that all enrolling patients receive treatment on protocol.

Each substudy specifies investigator-assessed progression-free survival (IA-PFS) and overall survival (OS) as the co-primary endpoints for the phase 3 primary objectives. The
primary objectives for phase 3 are to determine if there is a statistically significant difference in OS and to determine if there is both a clinically meaningful and statistically significant difference in IA-PFS. The phase 2 interim analysis in each trial is a “go-no go” decision based on IA-PFS to either continue accruing patients or to close the study for lack of evidence of efficacy at a phase 2 sample size (8). Along with the paired biomarker, drugs that satisfy the primary objectives have the potential for registration. The choice of PFS as a co-primary endpoint for phase 3 was made in collaboration with NCI and FDA, based on the well-known difficulties in obtaining unconfounded OS in trials in advanced lung cancer (27). The bar for PFS is high. In phase 2, target HR is 0.5 (at least a two-fold increase over controls; based on 55 progression events, yielding 90% power, 10% type 1 error); the approximate threshold for continuing to phase 3 is the observation of at least a 41% improvement in median PFS (HR=0.71). In phase 3, the sample size for each substudy is based on a target of 50% improvement in median OS (HR=0.67), with 90% power and a 2.5% 1-sided type 1 error rate, requiring 256 deaths. The approximate threshold for clinically and statistically significant PFS is 75% improvement in median PFS (HR=0.57), based on 290 events, power 90%, and type 1 error rate=0.014. Drug companies may also choose more stringent criteria for phase 2.

Negative trials will be interpreted only as failure of the specific therapeutic agent, and other drugs inhibiting the same target will be considered for future arms as appropriate (e.g., drugs or drug combinations with different specificity for the target and/or different toxicity profiles).

Biomarkers and Drugs

Detailed genomic analysis has identified potential therapeutic targets in over 60% of lung SCCA patients; each of these targets exists in a relatively rare subset of patients (2). Biomarkers for these targets of interest within Lung-MAP are defined by specific genomic alterations (mutations, amplifications, rearrangements) detected by NGS using the FMI FoundationOne platform (28), supplemented with immunohistochemistry assays (to detect over-expression of the actionable target) or other methodologies as appropriate, performed in a Clinical Laboratory Improvement Amendment (CLIA)-approved setting. It is anticipated that the NGS-defined biomarker will often be a suitable companion diagnostic for registration purposes. The rationale for an NGS-based screening approach stems from the identification in SCCA of multiple genetic alterations that are putative oncogenic “drivers,” the comprehensive coverage of markers ensuring a high hit rate, and the short turnaround time for obtaining results (Fig. 4).

Candidate drugs are evaluated by a multidisciplinary drug selection committee using specific criteria such as demonstrated biologic activity against the target associated with a proposed predictive biomarker(s), well-understood mechanism of activity against the target, evidence of clinical activity in cancer, particularly in squamous cell cancers (e.g., phase 1 responders), manageable toxicity, and practical dosage regimens that are acceptable to the patient and clinician. To date, the study team has focused on monotherapy, but understands, as described below, that more effective therapy may be achieved by targeting multiple components of signaling pathways simultaneously and will begin to explore combinations of

Clin Cancer Res. Author manuscript; available in PMC 2016 April 01.
targeted drugs. Drug and biomarker selection will be a continuous process during Lung-MAP to replace drugs or drug combinations that leave the study; to ensure that the non-match drug arm is always open to accrual; and to add substudies with new drugs or drug combinations/targets. Drug selection for Lung-MAP is a fluid process, intended to be responsive to research advances. The Drug Selection Committee meets frequently, up to monthly, as needed. As described above, when current drugs leave Lung-MAP, other drugs or drug combinations for their targets also may be considered. Candidate drugs will be sought from multiple sources including interested pharmaceutical companies, clinical investigators, and comprehensive literature surveys. Although the primary focus of Lung-MAP is on strategies with targeted drugs, the non-match substudy is also important. It both allows the exploration of new therapies with expected broad ranging activity across cancers, such as immunotherapy [represented by the current non-match substudy with the anti-programmed death receptor ligand 1 (anti-PD-L1) drug MEDI4736], and provides a way to offer screen negative patients access to a promising agent in a clinical trial setting.

Finally, Lung-MAP will provide a rich resource of tissue, blood, and imaging associated with well-documented clinical outcomes from patients with refractory lung SCCA for additional translational medicine studies. Considering that SCCA is one of the most genetically complex of all tumor types, it is anticipated that many lung SCCA tumors will require combination therapies to simultaneously inhibit multiple oncogenic drivers and overcome innate resistance mechanisms, likely necessitating custom-tailored regimens for each patient based on their unique tumor genetic profiles. Tackling this complexity will require not only comprehensive marker assessment, but a constant reevaluation and optimization of treatment outcomes that can only be conducted in a systematic clinical trial setting. The typical approach of clinical trials evaluating single biomarker-single treatment pairs in isolation will not be transformative. Additionally, while the comprehensive analysis of genetic alterations provided by NGS technology, including DNA mutations, insertions, deletions, copy number abnormalities, and chromosomal aberrations, is by far the most promising screening approach currently available, analysis of protein disposition may prove equally informative in some instances, necessitating development of additional biomarker assays. Lastly, analysis of blood-borne biomarkers has seen a recent resurgence subsequent to the development of highly sensitive, highly accurate analytics. Many research groups are currently developing approaches to investigate cell-free tumor DNA in peripheral circulation or detailed multiplexed analysis of circulating tumor cells. In addition to obviating the need for arduous and expensive tumor biopsies, theoretical advantages to a blood-based biomarker approach include reduced sampling error from individual biopsies in heterogeneous tumors such as SCCA, and the ability to detect emergence of acquired resistance mechanisms/alternative drivers over the course of therapy. The serial blood draws collected from each patient enrolled in Lung-MAP, added to the comprehensive tumor tissue analysis, will provide an invaluable resource for accelerated development of predictive blood-based biomarkers. The central collection of imaging data will allow for a better understanding of the radiomic signature of SCCA, understanding of the image based response and progression in these subsets and the potential to centrally verify IA-PFS.
Discussion—Challenges and Benefits

There are challenges to Lung-MAP, and to cancer drug development generally, that can be tackled as the study progresses, and the strategies for handling the challenges can be incorporated into designs to facilitate future trials. One example is that the Lung-MAP approach requires large and rapid accrual from many sites. This is addressed in part by the NCTN mechanism, which coordinates activities between different Cooperative Group research sites and their affiliates, allowing Lung-MAP to be offered as a clinical trial option at hundreds of institutions and treatment centers around the country, and potentially internationally. In order to accelerate access to as many sites as possible, Lung-MAP utilizes the NCI Central IRB (CIRB). By doing so, individual research institutions that allow the CIRB to replace institutional IRBs have fewer administrative steps to activating the trial, while maintaining the safety of study participants. Use of the CIRB is currently optional for NCTN sites; however, its use will become mandatory in 2015. While the general NCTN site qualification procedures are cost-effective and rigorous regarding requirements for study staff and facilities, they do not suffice for ensuring that adequate awareness, training, staff, and facilities are in place for individual studies across the NCTN. Additional qualification and planning activities through direct contact with sites, NCTN wide webinars, and regional investigator meetings are warranted.

Another challenge is that Lung-MAP requires commitment by pharmaceutical partners and the FDA to ensure that the trial provides a regulatory approval pathway. To support this, all partners—NCI, FDA, pharmaceutical companies, academic leaders, SWOG, Friends, and FNIH—have been involved in the design and development of the study as a whole, as well as of individual substudies. Further, it is difficult to conduct randomized trials in settings where patients have multiple options for obtaining treatment with targeted agents. In order to reduce confusion and help patients reach the best decisions for their care, a system has been put in place for Lung-MAP to provide guidance to physicians and patients on evaluation of screening results.

Finding the best drugs is another challenge. More than 100 candidate drugs were reviewed to identify the five in the first round of Lung-MAP. In many cases, exciting new drugs do not have the supporting clinical data needed for immediate selection for Lung-MAP. To address this, a pipeline could be established via phase 1/2a studies to identify candidates early in development and seamlessly develop needed data for the new candidate to become eligible for Lung-MAP. Another issue for access to drugs is company concerns regarding risks to primary development paths for their drugs. Although the costs to pharmaceutical companies for Lung-MAP are much less than for individual company-run studies, they are still significant. Particularly, the burden to smaller companies that may have exciting drugs but limited development resources should be considered in funding strategies.

Finally, the importance of integrating measures of patient reported outcomes (PROs) into clinical trials is increasingly recognized. Lung-MAP will incorporate PROs so that this added dimension is accounted for in judging the overall impact of new therapies.
In summary, Lung-MAP is a public-private collaboration where each partner is committed to rapidly identify new active drugs for SCCA NSCLC and to shorten the approval pathway (29). Lung-MAP is a new model for high-quality drug development in less time, at less cost, and, most importantly to improve the lives of patients with lung cancer. The benefits of this approach are summarized in Text Box 1 (29). The shared goal of accelerating the pace in which new drugs are developed is the driving force behind the Lung-MAP partnership.

Text Box 1

Benefits of Lung-MAP approach for drug development

- Grouping biomarker driven targeted drug studies under a single trial will reduce the screen failure rate, making the screening efficient and worthwhile for both patients and physicians
- Operational and protocol development efficiencies are provided by the Master Protocol framework. For example, consistency is provided by applying the Master Protocol—every drug for the disease would be tested in the identical manner
- A regulatory approval pathway is provided for drugs and companion diagnostic biomarkers
- Shared infrastructure for screening, database, enrollment, site management, etc. is less costly than in individual studies
- Improvement in overall efficiency of drug development is provided in a specific disease setting, bringing safe and more effective drugs to patients sooner than they might otherwise be available

Acknowledgments

This work was supported in part by the NCI of the NIH under award numbers U10CA180888 (to SWOG), U10CA180819 (to SWOG), and R01CA155196 (to R.S. Herbst) and by Amgen, AstraZeneca, Genentech, and Pfizer, through the Foundation for the National Institutes of Health and in partnership with Friends of Cancer Research.

References

Figure 1.

Umbrella and Basket Trials. The trials listed are currently on-going or soon to be activated trials with Umbrella or Basket designs with partial funding from US or United Kingdom governments. Details of these studies are presented in Table 1. Abbreviations: BATTLE=Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination; I-SPY 2=Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2; Lung-MAP=Lung Master Protocol; MATCH=Molecular Analysis for Therapy Choice; MPACT=Molecular Profiling-based Assignment of Cancer Therapy.

Umbrella

Test impact of different drugs on different mutations in a **single type of cancer**
- BATTLE
- I-SPY2
- Lung-MAP
- FOCUS4

Basket

Test the effect of a **drug(s)** on a single mutation(s) in a variety of cancer types
- NCI MATCH
- NCI MPACT

Clin Cancer Res. Author manuscript; available in PMC 2016 April 01.
Figure 2.
Lung-MAP Study Schema. Fresh tumor biopsy or archival FFPE tumor from eligible patients with Stage IIIB or IV lung SCCA whose disease has progressed on first-line therapy is evaluated using NGS (FoundationOne) and, in some cases molecular assays (e.g., IHC-based), carried out in a CLIA-certified laboratory for the presence of drug-specific biomarkers relevant to lung SCCA that may serve as targets for drugs currently under study in Lung-MAP. Results are returned within 10–14 days of tissue submission. Patients are then assigned to substudies based on their biomarkers or to a non-match therapy substudy; within the substudies the patients are randomized to biomarker-driven targeted or SOC therapy. Patients with more than one relevant biomarker are assigned to substudies based on an algorithm designed to best balance accrual among the substudies. Accrual and treatment in phase 2 continues within each substudy until a sufficient number of progression events has been observed to estimate whether or not a drug will likely be successful in the phase 3 component. Drugs meeting PFS criteria will continue on in phase 3 until a sufficient number of progression events has occurred to determine whether or not the targeted drug regimen shows statistically and clinically significant improvement in PFS over SOC. Patients will be followed for up to three years to determine effects on OS.
Figure 3.
Schema for Lung-MAP Substudies, June 2014. *Archival formalin-fixed, paraffin-embedded (FFPE) tumor, fresh core needle biopsy (CNB) if needed. NGS=Next Generation DNA Sequencing; OS=overall survival; PFS=progression free survival; TT=Targeted therapy, CT=chemotherapy (docetaxel or gemcitabine), TKI=tyrosine kinase inhibitor (erlotinib). See Table 2 for description of initial substudies in Lung-MAP.
Figure 4.
Prevalence of Genomic Alterations in Lung SCCA. This chart shows the prevalence and pattern of mutations, amplifications and rearrangements seen in 108 consecutive FFPE lung SCCA tumor samples sequenced using the FMI FoundationOne platform to an average unique median depth (the number of times a given region has been sequenced by independent reads) of >500x. This plot highlights the diversity of alterations in lung SCCA and the importance of a comprehensive genomic assessment with respect to both the number of genes assessed and alteration types.
<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
</table>

Representative basket and umbrella trials

<table>
<thead>
<tr>
<th>Status No. Sites</th>
<th>Lung-MAP</th>
<th>BATTLE</th>
<th>BATTLE 2</th>
<th>I-SPY 2</th>
<th>NCI MATCH</th>
<th>NCI MPACT</th>
<th>FOCUS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruiting 700+</td>
<td>Treatment phase completed, follow-up in progress</td>
<td>Recruiting 2</td>
<td>Recruiting 23</td>
<td>Not yet open Est. 2,400</td>
<td>Recruiting 1</td>
<td>Not yet open ND</td>
<td></td>
</tr>
</tbody>
</table>

Design and Enrollment to Screening and to Substudies of Moleculally Targeted Therapeutics

- **Lung-MAP**
 - Umbrella Design Phase 2/Phase 3
 - 3,125–6,250 planned for screening enrollment; 2,500–5,000 planned for randomization to substudies over 5 years.
 - Substudies compare molecularly targeted drug(s) with or without standard therapy to standard therapy. Drugs meeting phase 2 efficacy criteria may continue to phase 3; drugs meeting phase 3 efficacy criteria may seek regulatory approval.

- **BATTLE**
 - Umbrella Design Phase 2
 - 341 enrolled 255 randomized 244 evaluable.
 - Open-label, equal randomization for 97 patients across biomarkers and drugs. Followed by adaptive randomization on biomarker status for 158 patients based on DCR results for patients previously evaluated.

- **BATTLE 2**
 - Umbrella Design Phase 2
 - 400 planned for enrollment to substudies.
 - Open-label; Stage 1: 200 patients adaptively randomized based on DCR at 8 wks and KRAS status; predictive biomarkers/biomarker signatures to be developed. Stage 2: 200 patients adaptively randomized based on biomarkers/signatures developed in Stage 1.

- **I-SPY 2**
 - Umbrella Design Phase 2
 - 800 planned for randomization to substudies.
 - Open-label; adaptive randomization based on pCR results (and MRV) and combination of MammaPrint, ER/PR, and HER2 status. Molecularly targeted drugs are tested with standard neoadjuvant chemotherapy (including anti-HER2 therapy, as appropriate); concurrent control arms are included.

- **NCI MATCH**
 - Basket Design Phase 2
 - 3,000 planned for screening; 1,000–1,500 anticipated for assignment to substudies.

- **NCI MPACT**
 - Basket Design Phase 2
 - 700 planned for screening; 180 anticipated to be evaluable.
 - Feasibility study to be conducted in first 60 evaluable patients.
 - Substudies compare molecularly targeted drugs matching patients' molecular profiles with drugs not specific for the patients' molecular profiles.

- **FOCUS4**
 - Basket Design Phase 2/3
 - 2,000 estimated for randomization to substudies.
 - Multi-arm, multi-stage randomized trial design.
 - Patients are evaluated for the presence of relevant biomarkers during 16 wks of standard first-line chemotherapy; patients who respond or have stable disease at the end of the 16 wks are assigned to a substudy with drug(s) relevant to their biomarkers.
 - Substudies compare molecularly targeted drugs to placebo. Drugs meeting Phase 2 efficacy criteria may continue to Phase 3.

Overall Duration

- 8+ years
- 9 years
- 6 years
- 5+ years
- ND
- 4 years
- ND (9 year est.)

Est. No. of Substudies

- 4–7 concurrent throughout study duration
- 4
- 4
- 8+
- 20–25
- 4
- 5

Disease

- Advanced Squamous NSCLC
- Advanced NSCLC
- Advanced NSCLC
- Advanced Locally Invasive Breast Cancer (Neoadjuvant Setting)
- Advanced Solid Tumors or Lymphomas
- Advanced Solid Tumors
- Advanced or Metastatic Colorectal Cancer
<table>
<thead>
<tr>
<th></th>
<th>Lung-MAP</th>
<th>BATTLE</th>
<th>BATTLE 2</th>
<th>I-SPY 2</th>
<th>NCI MATCH</th>
<th>NCI MPACT</th>
<th>FOCUS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoints</td>
<td>1' PFS/Phase 2, PFS and/or OS/</td>
<td>1' PFS at 8 wks</td>
<td>1' DCR at 8 wks</td>
<td>1' pCR up to 26 wks</td>
<td>1' RR 2' PFS</td>
<td>1' RR (CR+PR) and/or PFS at 16 wks</td>
<td>1' PFS in Phase 2 PFS and/or OS in Phase 3</td>
</tr>
<tr>
<td></td>
<td>2' RR, toxicity</td>
<td>2' RR, OS, TTP, safety, biomarker, drug PK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Analysis</td>
<td>Phase 2: at progression; phase 3: at progression and at death</td>
<td>8 wks</td>
<td>8 wks</td>
<td>26 wks</td>
<td>26 wks</td>
<td>16 wks</td>
<td>At progression (specified number of events)</td>
</tr>
<tr>
<td></td>
<td>(specified number of events)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Archival or fresh tumor biopsy: NGS supplemented as needed with IHC and</td>
<td>Fresh tumor biopsy: EGFR mutation and CN, KRAS/BRAF mutation, VEGF/</td>
<td>Fresh tumor biopsy: KRAS mutations and assays of predictive biomarkers</td>
<td>Fresh tumor biopsy: MammaPrint, IHC for ER and PR, IHC or FISH or</td>
<td>Fresh tumor biopsy: NGS supplemented as needed with IHC and FISH</td>
<td>Fresh tumor biopsy: gene mutations and amplifications relevant to DNA</td>
<td>Tumor biopsy: analysis for BRAF, PI3CA, KRAS and NRAS mutations, epiregulin mRNA, and IHC for MMR and PTEN</td>
</tr>
<tr>
<td></td>
<td>other assay methodologies. See Table 2 for initial biomarkers assayed.</td>
<td>VEGFR-2 expression, RXR/Cyclin D1 and CCND1 CN.</td>
<td>for EGFR, PI3K/akt, and MEK inhibitors</td>
<td>TargetPrint for HER2</td>
<td>assays; approximately 200 genes evaluated; drugs chosen will target major cancer pathways</td>
<td>repair, PI3K, or RAS/RAF pathways</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BATTLE=Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination; CCND=cyclin D gene; CN=copy number; DCR=disease control rate; EGFR=epidermal growth factor receptor; ER=estrogen receptor; FISH=fluorescence in situ hybridization; HER2=human epidermal growth factor receptor 2; IHC=immunohistochemistry; I-SPY 2=Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2; Lung-MAP=lung master protocol; MATCH=Molecular Analysis for Therapy Choice; MEK=mitogen-activated kinase kinase; MMR=mismatch repair; MPACT=Molecular Profiling-based Assignment of Cancer Therapy; MRV=magnetic resonance imaging volume; ND=no data; NGS=next generation DNA sequencing; NSCLC=non-small cell lung cancer; OS=overall survival; pCR=pathologic complete response; PFS=progression free survival; PI3K=phosphatidylinositol-4,5-bisphosphate 3-kinase; PK=pharmacokinetics; PR=progesterone receptor; PTEN=phosphatase and tensin homolog protein (tumor suppressor); RCB=residual cancer burden; RFS=relapse free survival; RR=response rate; RXR=retinoid x receptor; TTP=time to progression; VEGF/VEGFR=vascular endothelial growth factor/vascular endothelial growth factor receptor.

Lung-MAP: www.clinicaltrials.gov/ct2/show/NCT02154490
BATTLE: www.clinicaltrials.gov/ct2/show/NCT00409968
BATTLE 2: www.clinicaltrials.gov/ct2/show/NCT01248247
I-SPY 2: www.clinicaltrials.gov/ct2/show/NCT01042379
MATCH: www.cancer.gov/clinicaltrials/noteworthy-trials/match#match
MPACT: www.clinicaltrials.gov/ct2/show/NCT01827384
FOCUS4: (17)
Table 2

Initial substudies in Lung-MAP

<table>
<thead>
<tr>
<th>Drug (TT, NMT) Manufacturer</th>
<th>Substudy Regimens</th>
<th>Mechanism of Action</th>
<th>Target/ Biomarkers</th>
<th>Initial Estimated Prevalence</th>
<th>Initial Estimated Patients (Phase 2/Phase 3)</th>
<th>Estimated Duration in Months (Phase 2/Phase 3)</th>
<th>Scientific Rationale</th>
</tr>
</thead>
</table>
| Taselisib (GDC-0032) Genentech | TT vs CT | PI3K Inhibitor (β-Isoform Sparing) | PI3K PIK3CA Mutation | 6–8% | 152/400 19/72 | | • More potent against PIK3CA mutant than wild type in vitro (30)
| | | | | | | | • Promising preliminary clinical activity in PIK3CA mutant cancers including SCCA (30, 31) Early data suggest that taselisib is less toxic than other PI3K inhibitors |
| PaBociclib Pfizer | TT vs CT | CDK4/6 Inhibitor (Highly Selective) | CDK4/6 CCND1, 2, 3 Mutations, CDK4 Amplification | 12% | 124/312 11/45 | | • Activity in RB+ cell lines and xenografts (32–34)
| | | | | | | | • Showed clinical activity (SD prolongation) as monotherapy (32–34)
| | | | | | | | • Very active in combination with letrozole in ER+, HER2− breast cancer (32–34) |
| AZD4547 AstraZeneca | TT vs CT | FGFR Kinase Inhibitor | FGFR FGFR Amplification, Mutation, Fusion | 9% | 112/302 11/53 | | • In vitro activity in FGFR amplified, mutated, gene translocated cell lines (35, 36)
| | | | | | | | • Amplification of FGFR1 in Chinese |

Clin Cancer Res. Author manuscript; available in PMC 2016 April 01.
<table>
<thead>
<tr>
<th>Drug (TT, NMT) Manufacturer</th>
<th>Substudy Regimens</th>
<th>Mechanism of Action</th>
<th>Target/Biomarkers</th>
<th>Initial Estimated Prevalence</th>
<th>Initial Estimated Patients (Phase 2/Phase 3)</th>
<th>Estimated Duration in Months (Phase 2/Phase 3)</th>
<th>Scientific Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rilotumumab [AMG102]</td>
<td>TT + E vs E</td>
<td>Anti-HGF</td>
<td>c-MET Expression</td>
<td>16%</td>
<td>144/326</td>
<td>9/37</td>
<td>• Potent tumor stasis or regression in xenograft models of SCCA NSCLC (35, 36)</td>
</tr>
<tr>
<td>Amgen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDI4736 AstraZeneca/MedImmune</td>
<td>NMT vs CT</td>
<td>Anti-PD-L1</td>
<td>Non-Match Study Activity in a PD-L1 +</td>
<td>56%</td>
<td>170/380</td>
<td>8/21</td>
<td>• Anti-PD1 and anti-PD-L1 monoclonal antibodies are active in NSCLC, work is on-going to define selected populations that will derive most benefit from treatment with these agents (39, 40)</td>
</tr>
</tbody>
</table>

Column 1 lists the four targeted therapies (TTs) and one non-match therapy (NMT) that comprise the initial set of drugs being evaluated in Lung-MAP. Column 2 shows the arms of the substudies. Three of the TTs are being evaluated as monotherapy against chemotherapy (docetaxel) (CT); the fourth is being evaluated in combination with erlotinib (E) against E. Column 3 lists the putative mechanisms of...
action of the drugs, which form the basis for using these drugs against the targets with corresponding biomarkers listed in Column 4. Column 5 shows the prevalence of the target/biomarkers in lung SCCA as estimated using Foundation Medicine (FMI)’s FoundationOne NGS platform in 108 lung SCCA samples for PIK3CA, CDK4/6, and FGFR (see Fig. 3). c-MET overexpression prevalence is estimated from previous studies of c-MET inhibitors. The estimated prevalence for the non-match substudy is 100% less the prevalence for the other targets. Column 6 shows the initial expected size and duration of the phase 2 and 3 studies for each drug. Column 7 is a brief description of the evidence supporting testing the drugs in Lung-MAP. Abbreviations: CCND=cyclin D gene, CDK4/6=cyclin dependent kinases 4 and 6, EGFR=epidermal growth factor receptor, ER=estrogen receptor, FGFR=fibroblast growth factor receptor, HER2= Human epidermal growth factor receptor 2, HGF= hepatocyte growth factor, NSCLC=Non-small cell lung cancer, PD-1=programmed death receptor 1, PD-L1=programmed death receptor ligand 1, PI3K= phosphatidylinositol-4,5-bisphosphate 3-kinase, PIK3CA=gene for PI3K catalytic subunit α, PR=partial response, RB=retinoblastoma gene, SCCA=squamous cell cancer, SD=stable disease. Additional information on the biological activity, clinical efficacy and toxicity of these drugs can be found in the references cited in this table.
Table 3

Comparison of prevalence of gene alteration in the substudy eligibility criteria between Foundation Medicine (FMI) and TCGA

<table>
<thead>
<tr>
<th>Drug (TT, NMT) Manufacturer Substudy ID</th>
<th>Gene</th>
<th>Alteration type</th>
<th>FMI prevalence (n=108 lung squamous cell carcinoma samples)</th>
<th>TCGA prevalence* (n=178 lung squamous cell carcinoma samples)</th>
<th>FMI vs. TCGA Difference p-value (Fisher’s exact test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZD4547 AstraZeneca Substudy D</td>
<td>FGFR1</td>
<td>Substitution</td>
<td>0.0%</td>
<td>0.6%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusion</td>
<td>0.0%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplification</td>
<td>7.4%</td>
<td>16.9%</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>FGFR2</td>
<td>Substitution</td>
<td>0.0%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusion</td>
<td>0.0%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplification</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FGFR3</td>
<td>Substitution</td>
<td>3.7%</td>
<td>2.2%</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusion</td>
<td>0.0%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplification</td>
<td>0.0%</td>
<td>0.6%</td>
<td>1</td>
</tr>
<tr>
<td>Palbociclib Pfizer Substudy C</td>
<td>CDK4</td>
<td>Amplification</td>
<td>0.9%</td>
<td>0.0%</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>CCND1</td>
<td>Amplification</td>
<td>8.3%</td>
<td>12.4%</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>CCND2</td>
<td>Amplification</td>
<td>2.8%</td>
<td>2.2%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CCND3</td>
<td>Amplification</td>
<td>1.9%</td>
<td>0.6%</td>
<td>0.55</td>
</tr>
<tr>
<td>Palbociclib Pfizer Substudy C</td>
<td>PIK3CA</td>
<td>Substitution</td>
<td>9.3%</td>
<td>11.8%</td>
<td>0.56</td>
</tr>
</tbody>
</table>

This table compares prevalence of gene alterations in the substudy eligibility criteria between FMI and TCGA lung SCCA datasets (p-values from Fisher’s exact test shown). The observed prevalences are similar between the two datasets, with the exception of FGFR1 amplifications, observed at a lower prevalence in the FMI dataset.

TCGA data of SCCA was retrieved using cBioPortal. This table compares prevalence of gene alterations in the substudy eligibility criteria between FMI and TCGA lung squamous cell carcinoma datasets (p-values from Fisher’s exact test shown). The observed prevalences are similar between the two datasets, with the exception of FGFR1 amplifications, observed at a lower prevalence in the FMI dataset.

Because FMI detects copy number alterations by fitting a statistical copy-number model to normalized coverage and allele frequencies, while the TCGA data used in this comparison was generated using the GISTIC algorithm and application of a per-sample variable threshold, the absolute level at which amplifications are called could not be directly compared. Given that amplifications in the FMI approach are called at an estimated 6 copies or above and adjusted to 7 copies for triploid and 8 copies for tetraploid specimens, it is likely that the difference is explainable by the more stringent definition of amplification in the FMI approach.