Mutations in the BLOC-1 Subunits Dysbindin and Muted Generate Divergent and Dosage-dependent Phenotypes

Jennifer Larimore, Agnes Scott College
Stephanie A. Zlatic, Emory University
Avanti Gokhale, Emory University
Karine Tornieri, Emory University
Kaela S. Singleton, Agnes Scott College
Ariana P. Mullin, Emory University
Junxia Tang, University of Pennsylvania
Konrad Talbot, Cedars-Sinai Medical Center
Victor Faundez, Emory University

Journal Title: Journal of Biological Chemistry
Volume: Volume 289, Number 20
Publisher: American Society for Biochemistry and Molecular Biology | 2014-05-16, Pages 14291-14300
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1074/jbc.M114.553750
Permanent URL: https://pid.emory.edu/ark:/25593/rmp2b

Final published version: http://dx.doi.org/10.1074/jbc.M114.553750

Copyright information:
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

Accessed March 1, 2019 6:45 PM EST
Mutations in the BLOC-1 Subunits Dysbindin and Muted Generate Divergent and Dosage-dependent Phenotypes*

Jennifer Larimore§, Stephanie A. Zlatic§, Avanti Gokhale§, Karine Tornieri§, Kaela S. Singleton‡, Ariana P. Mullin§, Junxia Tang§, Konrad Talbot§, and Victor Faundez§‡‡

From the §1Department of Biology, Agnes Scott College, Decatur, Georgia 30030, the § Department of Cell Biology and the **Center for Social Translational Neuroscience Emory University, Atlanta, Georgia 30322, the †1Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and the ‡1Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048

Background: Genetic defects affecting subunits of protein complexes are presumed to generate identical diseases in mammals. Results: Two mouse mutants in genes belonging to the BLOC-1 complex have divergent brain and pigmentation phenotypes. Conclusion: Genetic defects affecting subunits of a complex manifest by partially overlapping clinical features. Significance: Disease resulting from mutations in protein complexes may generate a wide range of clinically presentations.

Post-mortem analysis has revealed reduced levels of the protein dysbindin in the brains of those suffering from the neurodevelopmental disorder schizophrenia. Consequently, mechanisms controlling the cellular levels of dysbindin and its interacting partners may participate in neurodevelopmental processes impaired in that disorder. To address this question, we studied loss of function mutations in the genes encoding dysbindin and its interacting BLOC-1 subunits. We focused on BLOC-1 mutants affecting synapse composition and function in addition to their established systemic pigmentation, hematological, and lung phenotypes. We tested phenotypic homogeneity and gene dosage effects in the mouse null alleles muted (Bloc1s5μ/μ) and dysbindin (Bloc1s8dy/dy). Transcripts of NMMA receptor subunits and GABAergic interneuron markers, as well as expression of BLOC-1 subunit gene products, were affected differently in the brains of Bloc1s5μ/μ and Bloc1s8dy/dy mice. Unlike Bloc1s8dy/dy, elimination of one or two copies of Bloc1s5 generated indistinguishable pallidin transcript phenotypes. We conclude that monogenic mutations abrogating the expression of a protein complex subunit differentially affect the expression of other complex transcripts and polypeptides as well as their downstream effectors. We propose that the genetic disruption of different subunits of protein complexes and combinations thereof diversifies phenotypic presentation of pathway deficiencies, contributing to the wide phenotypic spectrum and complexity of neurodevelopmental disorders.

* This work was supported, in whole or in part, by National Institutes of Health Grants GM077569 and NS42599 (to V. F.), R01 MH072880 and PP MH604045 (to K. T.), and Emory University Integrated Cellular Imaging Microscopy Core and Viral Cores of the Emory Neuroscience NINDS Core Facilities Grant P30NS055077. This work was also supported by funds from the Children’s Hospital of Atlanta (CHOA) Children’s Center for Neuroscience (to V. F.).
†Supported by Graduate and Postdoctoral Training in Toxicology Training Grant T32 1P50NS071669 from the NIHES, National Institutes of Health.
‡To whom correspondence should be addressed: Dept. of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322. Tel.: 404-727-3900; E-mail: vfaundez@emory.edu.

Genetic polymorphisms in the gene encoding dysbindin are risk factors for schizophrenia onset and associate with cognitive and neuroanatomical differences in normal individuals (1–13). Dysbindin (Bloc1s8) is a subunit of the cytolic hetero-octamer referred to as BLOC-1 (the biogenesis of lysosome-related organelles complex 1). This complex consists of Bloc1s1–8 subunits. Analysis of dysbindin and its closely interacting BLOC-1 subunit mutants reveals a common set of autosomal recessive phenotypes in vertebrates and invertebrates. These phenotypes result from defective trafficking to lysosome-related organelles affecting systemic processes as well as pre- and post-synaptic neuronal compartments (13–16). For example, the sandy mouse null allele affecting dysbindin polypeptide expression, Bloc1s8dy/dy, impairs synaptic vesicle composition and function including glutamatergic and GABA-dependent neurotransmission (12, 13, 17–20). Similarly, dysbindin and Bloc1s1 mutants in Drosophila exhibit impaired neurotransmission, behavior and presynaptically abrogated glutamatergic synaptic homeostasis (21–24). Neuronal phenotypes have not been systematically explored in null mutations affecting other BLOC-1 complex subunits. In contrast, pigment dilution, pulmonary fibrosis, and bleeding diathesis, which constitute the core recessive systemic phenotypes of BLOC-1 mutations in mammals, are common to Bloc1s8dy/dy and four alleles affecting the expression of Bloc1s4 (reduced pigmentation), Bloc1s5 (muted), Bloc1s6 (pallid), and Bloc1s7 (cappuccino), respectively (14, 16, 25–30). The commonality of systemic phenotypes among these five mouse mutants is attributed to the idea long held by us and others in the field that each of these mutations exerts equal effects on BLOC-1 architecture, function, and downstream effectors (12, 14, 31). Here we demonstrate that Bloc1s5 and Bloc1s8 mutations exert differential effects on BLOC-1 complex function and downstream effectors. We explored the type and magnitude of neuronal phenotypes associated with single and double copy Bloc1s5 muted or Bloc1s8 sandy null alleles present in mice of identical genetic background. We identified neuronal transcriptional phenotypes whose quality and/or magnitude differ.
Phenotypic Heterogeneity of BLOC-1 Null Mutations

between these alleles. Transcriptional phenotypes were sensitive to the genetic dosage of mutant alleles. Our results support the concept that genetic mutations in dysbindin and its interacting BLOC-1 subunits generate only partially overlapping neuronal phenotypes in neurotransmitter systems implicated in the pathogenesis of schizophrenia.

MATERIALS AND METHODS

Reagents—Mouse anti-pallidin was a gift from Dr. Esteban Dell’Angelica (UCLA, Los Angeles, CA) (29). Rabbit anti-VAMP-2 and VGAT were purchased from Synaptic Systems (Göttingen, Germany). VAMP7 monoclonal antibody was a generous gift of Dr. Andrew Peden (University of Sheffield, UK). Dysbindin 1A and 1C were detected with the antibody PA3111 (32) Mouse mutants have been previously described (17, 33, 34). Boc1s8sdy/sdy mice in CHMU background (CHMU/Lc), stock number 000293) were backcrossed by at least six generations with C57B6 mice obtained from The Jackson Laboratory (Bar Harbor, ME). Boc1s8sdy/sdy mice were a gift of Dr. R. Swank (Roswell Park Cancer Institute, Buffalo, NY). Boc1s8sdy/sdy (sandy) and Boc1s8sdy/sdy were also in C57B6 genetic background. Sandy mice were previously described (35). Mouse genotyping was performed by PCR of genomic DNA with the primers forward mutated (cattgaagctagcagtct) and reverse mutated (agcagtaggtcttccagg).

Mouse and Human Subjects—All mice were bred in-house following institutional animal care and use committee-approved protocols. Human post-mortem tissue derived from samples of U.S. citizens autopsied at the Hospital of the University of Pennsylvania as approved by the institutional review board at that university. Autopsy consent from next of kin or legal guardian was obtained in all cases. For most cases, consent was granted in writing before death and always confirmed after death. Ethics committee at the University of Pennsylvania approved the consent procedures. To keep post-mortem delays to a minimum when written consent had not been obtained before death, verbal consent was obtained as witnessed by a third party and documented by the physician making the request. Written records of the consent for autopsy were archived. These procedures for written and verbal consent are standard medical practice in the United States.

Brain Sections, Immunohistochemistry, and Microscopy—Detailed procedures for mouse tissue preparation, indirect immunofluorescence microscopy, and quantification procedures were described in our previous work (17, 33, 36). Briefly, brains were obtained from mice 6–8 weeks postnatal. Animals were anesthetized with ketamine and then transcardially perfused with Ringer’s solution followed by fixative (4% paraformaldehyde with 0.1% glutaraldehyde). Brains were post-fixed in 4% paraformaldehyde for 12–18 h followed by sectioning on a vibratome into 60-μm-thick sections and stored in antifreeze (0.1 M sodium phosphate monobasic, 0.1 M sodium phosphate dibasic heptahydrate, 30% ethylene glycol, 30% glycerol) at −20 °C. Vibratome sections containing the hippocampus were incubated in 1% sodium borohydride. Tissue was blocked for 60 min (5% normal horse serum, 1% BSA, and 0.3% Triton X-100). Brain sections were incubated in primary antibody overnight (anti-Pallidin 1:200 with anti-Vamp2 1:000 V2, 1% normal horse serum and 1% BSA). The following day, tissue was incubated in a secondary antibody for 60 min (1% normal horse serum and 1% BSA, 1:500 anti-mouse 488 and anti-rabbit 568) (Invitrogen). Finally, brain sections were incubated for 30 min in cupric sulfate (3.854 w/v ammonium acetate, 1.596 w/v cupric sulfate, pH 5). Tissue sections were mounted on slides with Vectashield (Vector Laboratories). Confocal microscopy of immunofluorescent samples was performed with an Axiovert 100 μ (Carl Zeiss) coupled to an argon laser, a HeNe1 laser, and a titanium sapphire laser. Z-stacks were acquired using Plan Apochromat 20×/0.5 dry objective. The emission filters used for fluorescence imaging were BP 505–530 and LP 560. The images were acquired with ZEN software (Carl Zeiss).

Melanin Measurements Procedure—Procedures were performed according to Hoyle et al. (37). Briefly, a solution containing a 9:1 ratio of Solune 350 (PerkinElmer Life Sciences) and water was added to hair samples at a ratio of 250 μl/mg of hair. Samples were vortexed for 1 min, heated to 95 °C for 30 min, cooled, vortexed for 2 min, heated to 95 °C for 15 min and then brought to room temperature. Next, 400 μl of the sample was transferred to a tube containing 600 μl of Solune 350/ water mixture. Samples were again vortexed and heated to 95 °C for 15 min. Then they were centrifuged for 10 min at 13,000 × g to remove debris. Absorbance at 500 nm was measured for each sample. The standard curve was obtained by dissolving purified melanin from Sepia officinalisis (Sigma-Aldrich). Sepia melanin was processed as hair samples. Dilutions were made from the stock solution using Solune 350/water solution.

Quantitative Real Time PCR—Control and mutant cortical and hippocampal regions were dissected from young adult animals between postnatal days 42 and 52 sacrificed by CO2 narcosis. Tissue was flash frozen and TRizol-extracted (Invitrogen), and isolated RNA was reverse transcribed into cDNA using SuperScript III first strand synthesis (Invitrogen). PCR amplifications were performed on a LightCycler480 real time plate reader using LightCycler 480 SYBR Green reagents (Roche).

Statistical and Bioinformatic Analyses—Statistical analyses were performed with a KaleidaGraph v4.03 (Synergy, Reading, PA).

RESULTS

Boc1s5 Muted Mouse Models Reveal Unique Dysbindin and Pigment Dilution Phenotypes—Our studies were prompted by the identification of unexpected differences in dysbindin polypeptide composition in brains of mice carrying null alleles of Boc1s5 (mutted, mu) and Boc1s8 (sandy, sdy). Dysbindin immunoblot detected two dysbindin immunoreactive polypeptides of ~35 and ~50 kDa in human and wild type mouse brain (Fig. 1). We have termed these bands dysbindin 1A and 1C (Fig. 1) (32). The identity of these immunoreactive bands as Bloc1s8 null mice (Fig. 1A, compare lanes 7 and 8 with lanes 9

14292 JOURNAL OF BIOLOGICAL CHEMISTRY

VOLUME 289•NUMBER 20•MAY 16, 2014
Phenotypic Heterogeneity of BLOC-1 Null Mutations

We hypothesized that this difference in dysbindin polypeptide expression between Bloc1s5sdy/sdy and Bloc1s8sdy/sdy could reflect wider differences in molecular and systemic phenotypes among BLOC-1 null mutations. To test this hypothesis, we generated mice carrying the Bloc1s5sdy/sdy and Bloc1s8sdy/sdy alleles on identical genetic backgrounds. These mutant alleles were originally isolated in CHMU and DBA/2J backgrounds, respectively (16, 28). We confirmed the presence of mutant alleles by sequencing PCR fragments encompassing the ETn transposon insertion in the Bloc1s5 (Fig. 2, A and B) and the deletion in the Bloc1s8 loci in C57B mouse strains (data not shown). Addition-
Phenotypic Heterogeneity of BLOC-1 Null Mutations

![Image](http://www.jbc.org/content/289/20/14294.full)

**FIGURE 3.** Bloc1s5 muted affects the expression of the BLOC-1 complex polypeptide pallidin. A, hippocampal sections from wild type, Bloc1s5 mut/mut, and Bloc1s5 mu/mu mice were stained with antibodies against the BLOC-1 subunit pallidin and the synaptic vesicle marker VAMP2. The right panels present look-up tables (LUT) to highlight differences in pallidin expression among genotypes. B, a quantitation of pallidin immunoreactivity expressed as ratios between pallidin and VAMP2. Each dot represents an independent staining performed in four wild type and Bloc1s5 mu/mu hippocampi or two Bloc1s5 +/- mice. C and D, immunoblot determinations of pallidin and their quantitation in mouse hippocampi (n = 3 animals and 3 independent determinations; one-way analyses of variance followed by Dunnett’s multiple comparison was used in B and D). IB, immunoblot.

We tested whether pallidin protein reductions observed in Bloc1s5 +/- mice and Bloc1s5 mu/mu hippocampi were due to only post-translational mechanisms or whether altered transcript levels could account for the similar reduction of pallidin protein levels. We measured Bloc1s6 pallidin transcripts in the adult hippocampal formation as well as the cortex of Bloc1s5 +/- and Bloc1s5 mu/mu mice by quantitative real time PCR (Fig. 4, A and B). Pallidin Bloc1s6 transcript levels were reduced in the hippocampal formation of both Bloc1s5 +/- mice (Fig. 4A, rows 1 and 2) and Bloc1s5 mu/mu mice (Fig. 4B, rows 1 and 2), whereas we saw no changes in the expression of dysbindin Bloc1s8 mRNA. Similarly, pallidin Bloc1s6 transcript content was half of control adult cerebral cortex in Bloc1s5 +/- mice (Fig. 4C, rows 9 and 10) and Bloc1s5 mu/mu mice (Fig. 4D, rows 9 and 10).

Bloc1s5 muted mRNA was 50% of the wild type levels in Bloc1s5 +/- cortex (Fig. 4A, rows 7 and 8) and was undetectable in Bloc1s5 mu/mu cortex (Fig. 4C, rows 7 and 8). Thus, mRNA levels precisely matched the genotype of Bloc1s5 mutant mice, demonstrating the fidelity of mRNA determinations.

The unexpected effect of the Bloc1s5 muted allele on the expression Bloc1s6 pallidin messages prompted us to test whether the Bloc1s5 muted allele affected the expression of other BLOC-1 subunit mRNAs. Bloc1s5 and 6 were the only transcripts whose expression was reduced in Bloc1s5 +/- brain tissue (Fig. 4C). In contrast, we observed a significant decrease in the content of six of the eight BLOC-1 complex subunits, Bloc1s2, 3, 5, 6, and 7 (Fig. 4D, rows 3–12), in Bloc1s5 mu/mu tissue. Decreased mRNA levels were more pronounced for Bloc1s5 muted and Bloc1s6 pallidin transcripts in Bloc1s5 mu/mu tissue (Fig. 4D, rows 7–10). Unlike the double copy Bloc1s5 muted mutation, double copy null Bloc1s6 pallid (pa) and Bloc1s8 sandy (sdy) had no effect on neuronal Bloc1s5 muted and Bloc1s6 pallidin mRNA expression (Fig. 5). These results indicate that mutations in loci encoding BLOC-1 subunits differ in molecular phenotypes related to the expression of transcripts encoding BLOC-1 subunits. Moreover, these findings uncover a hitherto unknown effect of mutations in protein trafficking complexes in the levels of their own subunit encoding transcripts.

**Bloc1s5 mu/mu and Bloc1s8 sdy/sdy Mouse Hippocampi Diverge in Glutamatergic Transcriptional Profiles—Differences in BLOC-1 subunit transcriptional profiles in Bloc1s5 mu/mu and Bloc1s8 sdy/sdy mutants predict that downstream effectors of the BLOC-1 complex should be differentially affected by these alleles. To test whether phenotypic divergence between Bloc1s5 mu/mu and Bloc1s8 sdy/sdy extends to effectors downstream of BLOC-1, we measured the expression of mRNAs encoding glutamatergic and GABAergic markers in Bloc1s5 mu/mu and Bloc1s8 sdy/sdy mouse hippocampal formations. We chose these neurotransmitter systems because they are implicated in the pathogenesis of schizophrenia (40–45). NMRA receptor subunit transcripts were selected as markers of glutamatergic neurotransmission as mutations in Bloc1s8 modify the expression of NMRA receptor mRNA and alter NMRA subcellular distribution and function of receptors in neurons (18, 46, 47). We compared expression of mRNAs encoding NMRA receptor...
Phenotypic Heterogeneity of BLOC-1 Null Mutations

NR1 subunit and NR2 isoforms in Block1s5mumumu, Block1s5+/-mu, Block1s5mumumu, Block1s5mu/-mu, and Block1s5mumumu hippocampi were analyzed by quantitative RT-PCR. Similar to previous reports of NR1 transcripts in Block1s8sdy/sdy mouse hippocampi, transcript levels encoding the synaptic vesicle protein synaptophysin were used as controls in all Block1s6pa/+ Block1s6pa/-, Block1s6pa/-, and Block1s6pa/- hippocampal formations. NR1 transcripts were reduced in Block1s8sdy/sdy (Fig. 6D, rows 7–10). Furthermore, and in contrast to Block1s8sdy/sdy hippocampi, Block1s5mumumu did not affect expression of any receptor subunit mRNAs (Fig. 6C). Syp transcript levels encoding the synaptic vesicle protein synaptophysin were used as controls in all Block1s6pa/+ Block1s6pa/-, Block1s6pa/-, and Block1s6pa/- hippocampal formations.

FIGURE 4. Block1s5 mu/mu affects the expression of the BLOC-1 complex transcripts. BLOC-1 subunit transcripts from adult wild type, Block1s5+/-mu, and Block1s6pa/+ Block1s6pa/-, Block1s6pa/-, and Block1s6pa/- hippocampi were analyzed by quantitative RT-PCR. A box plot depicts relative mRNA content in hippocampus (A and B) and cortex (C and D). Red boxes in A and D depict results for Block1s5+/-mu, and red boxes in B and D for Block1s6pa/+ Block1s6pa/-, respectively. Wild type is depicted in blue in all panels. Transcripts are listed to the left of graphs in italics (n = 3 animals with determinations in duplicate; one-way analysis of variance followed by Dunnett’s multiple comparisons).

FIGURE 5. Pallidin and muted transcripts are not affected by a null Block1s8 allele. BLOC-1 subunit transcripts from adult wild type, Block1s6pa/+ Block1s6pa/-, Block1s6pa/-, and Block1s6pa/- hippocampi were analyzed by quantitative RT-PCR. The box plot depicts relative mRNA content. Red boxes depict relative mRNA content for mutant alleles. Wild type is depicted in blue in all panels. Transcripts are listed to the far left of graph in italics (n = 3 animals with determinations in at least duplicate; one-way analysis of variance followed by Dunnett’s multiple comparisons).

NR1 subunit and NR2 isoforms in Block1s5mumumu, Block1s5+/-mu, Block1s5mumumu, Block1s5mu/-mu, and Block1s5mumumu hippocampal formations.

Similar to previous reports of NR1 transcripts in sandy prefrontal cortex, we found that NR1 mRNA is decreased in Block1s8sdy/+ Block1s8sdy/+, and Block1s8sdy/+ Block1s8sdy/+ hippocampal formations (18). In addition, mRNA levels of all NR2 isoforms were significantly reduced in Block1s8sdy/+ Block1s8sdy/+ as compared with wild type hippocampal formations (Fig. 6B, rows 3–10). In contrast, Block1s8+/- Easy to divergent hippocampal formations had increased in NR2A and NR2B mRNAs without effects on other receptor subunits (Fig. 6A, rows 3–6). Vamp2 transcript levels encoding the synaptic vesicle protein synaptobrevin 2 were used as mRNA loading controls in all Block1s8sdy/+ Block1s8sdy/+ hippocampal formations (6B, rows 11 and 12). We contrasted the NMDA receptor transcriptional signature observed in Block1s8sdy/+ Block1s8sdy/+ hippocampal formation with that of Block1s6pa/+ Block1s6pa/- and Block1s8+/- Easy to divergent hippocampal formation as compared with Block1s5mumumu and Block1s5mumumu tissue altered the expression of all NMDA receptor mRNAs tested (Fig. 6A, rows 1–10). However, phenotypic overlap between Block1s5mumumu and Block1s8sdy/+ Block1s8sdy/+ was restricted to only two of the five NMDA receptor subunits analyzed, NR2C and D (Fig. 6D, rows 7–10). Transcripts encoding these two subunits were reduced both in Block1s5mumumu and Block1s8sdy/+ Block1s8sdy/+ (Fig. 6D, rows 7–10). Further, in contrast to Block1s8sdy/+ Block1s8sdy/+ hippocampi, Block1s5mumumu did not affect expression of any receptor subunit mRNAs (Fig. 6C). Syp transcript levels encoding the synaptic vesicle protein synaptophysin were used as controls in all Block1s6pa/+ Block1s6pa/-, Block1s6pa/-, and Block1s6pa/- hippocampal formations (Fig. 5A, C, and D, rows 11 and 12). These results demonstrate that mutations to different BLOC-1 subunit genes differentially affect NMDA receptor subunit expression in the hippocampus, with marked changes in Block1s8 but moderate effects in Block1s5 mice.

Block1s5mumumu and Block1s8sdy/+ Block1s8sdy/+ Mouse Hippocampi Diverge in GABAergic Transcriptional Profiles—Homeostatic plasticity maintains circuit excitability in face of perturbations. Set point is restored by changes in gene expression in functionally opposing neurotransmitter systems (48, 49). Thus, we reasoned that the NMDA receptor phenotypic divergence between Block1s5mumumu and Block1s8sdy/+ Block1s8sdy/+ should be accompanied by divergent and proportional changes in GABAergic neurotransmission markers. Parvalbumin levels are reduced in GABAergic interneurons of the Block1s8sdy/+ Block1s8sdy/+ hippocampal formation (19). We measured parvalbumin and a panel of GABAergic interneuron subpopulation markers by quantitative real time PCR using (Fig. 7). We observed a reduction in the mRNA level for parvalbumin in Block1s8sdy/+ Block1s8sdy/+ hippocampal formations, an observation consistent with the reported reduced density of parvalbumin positive cells in Block1s8sdy/+ Block1s8sdy/+ tissue (Fig. 7B, rows 3 and 4). Similar results were obtained with markers of GABA-positive interneurons such as the glutamate decarboxylase of 65 kDa (Gad2), GABA transporter 2 (Slc6a13), vesicular GABA transporter (Vgat, Slc32a1), the neuropeptide somatostatin (Sst), or interneuron enriched transcription factors such as Arx, Npas1, and Lhx6 (Fig. 7A, rows 1–10). In contrast with Block1s8sdy/+ Block1s8sdy/+ hippocampi, transcript levels of GABAergic interneurons remained unaltered in Block1s5mumumu tissue except for Arx and Npas1 transcripts, which were less pronouncedly reduced (Fig. 7B, rows 11–14). There were no significant changes in transcript levels in Block1s8sdy/+ Block1s8sdy/+ hippocampi (data not shown). mRNA loading controls were similar across genotypes.
as measured by transcripts encoding the synaptic vesicle protein synaptophysin (Sphysin; Syp; Fig. 7, A and B, rows 17 and 18). We confirmed these differences in GABAergic phenotypes by measuring the protein levels of the synaptic vesicle GABA transporter (VGAT; Fig. 7, C–E). Similar to what we observed with VGAT mRNA levels, the VGAT polypeptide was drastically decreased in Bloc1s8sdy/sdy mice as compared to wild type. The differences were present in both the upper (A and B) and lower (C and D) hippocampal subfields. Similar to the mRNA data, VGAT protein levels were reduced in Bloc1s5mu/mu mice as compared to wild type. The differences were present in both the upper (A and B) and lower (C and D) hippocampal subfields. The decreases in VGAT protein levels were similar to the decreases in VGAT mRNA levels. The decreases in VGAT protein levels were similar to the decreases in VGAT mRNA levels.
Our results provide evidence that markers, a phenotype that diverges from mutations in contrast, VGAT polypeptide expression in in (14, 16, 25–30). Here we genetically tested the extent of phenotypic homogeneity in neuronal cells. We demonstrate divergent phenotypes common to dysbindin and other BLOC-1 complex subunits mutations require its normal quaternary structure. In contrast, divergent phenotypes may be caused by remnants of the BLOC-1 complex left after uneven protein down-regulation of the octamer. As such, BLOC-1 down-regulation remnants should have different composition/stoichiometry among mutations affecting the dysbindin-BLOC-1 complex subunits to account for phenotypic divergence. The extent of degradation of BLOC-1 complex subunits seems divergent among mutations affecting different BLOC-1 complex subunits, although this has not been quantitatively assessed (16, 25–30). Our data support the remnant-derived phenotype hypothesis as exemplified by the effects that the Bloc1s5mux/mux and Bloc1s8ady/ady mutants exert upon the expression of dysbindin 1C in mouse brain. The remnant-derived phenotype hypothesis makes two predictions. First, it suggests that some mutation-associated phenotypes could be semidominant or partially expressed in single copy loss mutations. This is the case for the hippocampal palladin transcript decrease and pigmentation reduction in Bloc1s5+/mux, as well as the effect of Bloc1s8+/ady on NR2A and B transcripts. Second, it predicts the counterintuitive notion that phenotypes in a null mutation affecting one BLOC-1 complex subunit could be ameliorated by genetic deficiencies in a second subunit of the complex. Additionally, divergent phenotypes may reflect loss of function of roles played by individual dysbindin-BLOC-1 subunits occurring outside the octameric dysbindin-BLOC-1 complex. This is the case of Bloc1s7 snapin that engages in molecular interactions independent of dysbindin-BLOC-1 complex (55–59). The complexity of the divergences in transcriptional phenotypes extends beyond differences in just the mRNAs affected. NR1 and NR2B are decreased in Bloc1s8dy/ady, yet these same mRNAs are up-regulated in Bloc1s5mux/mux. This suggests different pathways affecting these messages in these two BLOC-1 null phenotypes. The molecular determinants defining the type of transcript affected and whether they are up- or down-regulated in BLOC-1 null alleles remains to be explored.

Our findings also have implications for neurodevelopmental disorders such as schizophrenia. Dysbindin protein expression is decreased in the brain of 80% of schizophrenia patients tested thus far (32, 38). The cause(s) of this dysbindin down-regulation remains unknown. However, it is unlikely that DTNBPI polymorphisms associated with schizophrenia risk alone may explain dysbindin protein reduction. The frequency of these

**DISCUSSION**

Much of what we know about the function of dysbindin and its interacting BLOC-1 complex subunits comes from the study of genetic mutations in mice. Phenotypic homogeneity has been a hallmark of BLOC-1 subunit mutant alleles (14, 16, 25–29). This assertion is supported by the shared systemic phenotypes associated to these mutants, as well as the severely decreased protein expression of multiple BLOC-1 subunits common to dysbindin and other BLOC-1 subunits mutations (14, 16, 25–30). Here we genetically tested the extent of phenotypic homogeneity in neuronal cells. We demonstrate divergent genotypes and allele-specific gene dosage effects in neuronal phenotypes associated with Bloc1s5 muted and Bloc1s8 sandy mutations in neurons. Phenotypic divergence encompasses expression of BLOC-1 subunit gene products, NMDA receptor subunits transcripts, and GABAAergic interneurons markers (Fig. 8). These transcripts and polypeptides highlight neurotransmitter mechanisms and cell types implicated by schizophrenia pathogenesis hypotheses (40–43). Our mouse genetic results support the dosage balance hypothesis, which predicts the emergence of distinct phenotypes among mutations affecting different subunits of a protein complex (53, 54).

The mechanism by which mutations in dysbindin and interacting BLOC-1 subunits generate common as well as divergent phenotypes is presently unknown. However, we speculate that phenotypes common to all BLOC-1 complex subunits mutations require its normal quaternary structure. In contrast, divergent phenotypes may be caused by remnants of the BLOC-1 complex left after uneven protein down-regulation of the octamer. As such, BLOC-1 down-regulation remnants should have different composition/stoichiometry among mutations affecting the dysbindin-BLOC-1 complex subunits to account for phenotypic divergence. The extent of degradation of BLOC-1 complex subunits seems divergent among mutations affecting different BLOC-1 complex subunits, although this has not been quantitatively assessed (16, 25–30). Our data support the remnant-derived phenotype hypothesis as exemplified by the effects that the Bloc1s5mux/mux and Bloc1s8ady/ady mutants exert upon the expression of dysbindin 1C in mouse brain. The remnant-derived phenotype hypothesis makes two predictions. First, it suggests that some mutation-associated phenotypes could be semidominant or partially expressed in single copy loss mutations. This is the case for the hippocampal palladin transcript decrease and pigmentation reduction in Bloc1s5+/mux, as well as the effect of Bloc1s8+/ady on NR2A and B transcripts. Second, it predicts the counterintuitive notion that phenotypes in a null mutation affecting one BLOC-1 complex subunit could be ameliorated by genetic deficiencies in a second subunit of the complex. Additionally, divergent phenotypes may reflect loss of function of roles played by individual dysbindin-BLOC-1 subunits occurring outside the octameric dysbindin-BLOC-1 complex. This is the case of Bloc1s7 snapin that engages in molecular interactions independent of dysbindin-BLOC-1 complex (55–59). The complexity of the divergences in transcriptional phenotypes extends beyond differences in just the mRNAs affected. NR1 and NR2B are decreased in Bloc1s8dy/ady, yet these same mRNAs are up-regulated in Bloc1s5mux/mux. This suggests different pathways affecting these messages in these two BLOC-1 null phenotypes. The molecular determinants defining the type of transcript affected and whether they are up- or down-regulated in BLOC-1 null alleles remains to be explored.

Our findings also have implications for neurodevelopmental disorders such as schizophrenia. Dysbindin protein expression is decreased in the brain of 80% of schizophrenia patients tested thus far (32, 38). The cause(s) of this dysbindin down-regulation remains unknown. However, it is unlikely that DTNBPI polymorphisms associated with schizophrenia risk alone may explain dysbindin protein reduction. The frequency of these
DTNBP1 disease-associated small nucleotide polymorphisms is too low to account for the highly penetrant dysbindin protein down-regulation phenotype observed in schizophrenia populations (60). Dysbindin levels depend on protein expression of other BLOC-1 complex subunits, a mechanism considered post-translational. Likely, ubiquitin ligases like TRIM32 may down-regulate dysbindin in the absence of other BLOC-1 subunits (61). This untested model is analogous to the mechanism that accounts for the degradation of the adaptor complex AP-3 after one of its subunit encoding genes is mutated (62). Protein complexes frequently respond with multiprotein down-regulation of many of their constituents after genetic mutation of only one of their components (62–65). En bloc degradation of the BLOC-1 complex does not consider transcriptional contributions. Our results add an unsuspected and novel layer of complexity as BLOC-1 subunit transcripts encoded by nonmutated genes are modified by specific mutations in BLOC-1 subunits. We demonstrate down-regulation of four BLOC-1 transcripts, other than Bloc1s5 mRNA, in Bloc1s5<sup>mu/mu</sup> brain tissue. Most notably, there is a concurrent and similar drop in pallidin transcript and polypeptide levels in both single and double copy Bloc1s5<sup>mut</sup> mutants. Pallidin transcript levels are normal in Bloc1s8 mutants irrespective of gene dosage. However, phenotypes associated with loss of one gene copy are not restricted to Bloc1s5<sup>+/+</sup> brain. They at least include pigment dilution in Bloc1s5<sup>+/mu</sup> skin and NR2A-B transcripts in Bloc1s8<sup>+/dx</sup> brain. Thus, allele and gene dosage-specific effects in a protein complex such as BLOC-1 could be a general mechanism to generate phenotypic diversity among individuals with mutations in different loci belonging to a pathway. Single copy losses of either one gene or chromosomal segment are important genetic risk factors for diverse neurodevelopmental disorders ranging from schizophrenia to autism spectrum disorder (66–70). These genetic defects are also genetic modifiers of human cognition (71). The phenotypic spectrum in these single copy loss variations is quite wide. On one hand, the same genetic defect generates more than one disorder. On the other hand, the same disorder is produced by single copy loss of different loci (72–74). Mechanisms by which these single copy losses generate neurodevelopmental and cognition defects are not understood. However, it is likely that multiple molecular mechanisms may account for their pathogenic effect. We propose that common single copy loss of genetic loci associated to schizophrenia (44, 45), such as chromosome 22q11 deletion syndrome (75), could expand and diversify their clinical presentation spectrum by altering the stability of messages and/or polypeptides belonging to macromolecular complexes.

Acknowledgments—We are indebted to the Faundez laboratory members for comments.

REFERENCES


schizophrenia susceptibility factor dysbindin and its associated complex sort cargoes from cell bodies to the synapse. Mol. Biol. Cell 22, 4854–4867
Phenotypic Heterogeneity of BLOC-1 Null Mutations

Mutations in the BLOC-1 Subunits Dysbindin and Muted Generate Divergent and Dosage-dependent Phenotypes

Jennifer Larimore, Stephanie A. Zlatic, Avanti Gokhale, Karine Tornieri, Kaela S. Singleton, Ariana P. Mullin, Junxia Tang, Konrad Talbot and Victor Faundez

doi: 10.1074/jbc.M114.553750 originally published online April 8, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.553750

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 74 references, 25 of which can be accessed free at http://www.jbc.org/content/289/20/14291.full.html#ref-list-1