From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations

Gudio Veit, McGill University
Radu G. Avramescu, McGill University
Annette N. Chiang, University of Pittsburgh
Scott A. Houck, University of North Carolina
Zhiwei Cai, University of Bristol
Kathryn W. Peters, University of Pittsburgh
Jeong S. Hong, University of Alabama, Birmingham
Harvey B. Pollard, Uniformed Services University of the Health Sciences
William B. Guggino, Johns Hopkins University
William E. Balch, Scripps Research Institute

Only first 10 authors above; see publication for full author list.

Journal Title: Molecular Biology of the Cell
Volume: Volume 27, Number 3
Publisher: American Society for Cell Biology | 2016-02-01, Pages 424-433
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1091/mbc.E14-04-0935
Permanent URL: https://pid.emory.edu/ark:/25593/rjw9s

Final published version: http://dx.doi.org/10.1091/mbc.E14-04-0935

Copyright information:
© 2016 Veit et al.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Accessed December 12, 2018 3:04 AM EST
From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations

Department of Physiology, Department of Biochemistry, and GRASP, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; Marsico Lung Institute, School of Medicine, University of North Carolina, Chapel Hill, NC 27514; School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261; Department of Cellular, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL 35294; Department of Anatomy, Physiology and Genetics and Center for Medical Proteomics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; Department of Physiology and McKusick-Nathans Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205; Department of Chemical Physiology, Skaggs Institute of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322

ABSTRACT More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients.

© 2016 Veit et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.
INTRODUCTION

Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), is characterized by a multiorgan pathology affecting the upper and lower airway, gastrointestinal and reproductive tracts, and endocrine system (Riordan et al., 1989; Collins, 1992; Rowe et al., 2005; Cutting, 2015). CF is one of the most common lethal autosomal-recessive diseases, with a prevalence of one in 3500 in the United States and one in 2500 in the European Union (Farrell, 2008; Pettit and Fellner, 2014). Lack of functional CFTR expression at the apical membrane of secretory epithelia results in defective Cl⁻ and bicarbonate secretion, coupled to enhanced Na⁺ absorption and mucus secretion, which in airway epithelia leads to dehydration and acidification of the airway surface liquid (Tarran et al., 2001; Chen et al., 2010; Derichs et al., 2011; Pezzulo et al., 2012). A consequence, impaired mucociliary clearance provokes recurrent infection and uncontrolled inflammation culminating in lung damage, which is the primary cause of morbidity and mortality in CF (Ratjen and Doring, 2003; Boucher, 2007; Stoltz et al., 2011). CFTR is member of the ATP-binding cassette (ABC) subfamily C (ABCC7) (Kerr, 2002). It consists of two homologous subunits that are connected by an unstructured regulatory domain (Riordan, 1993; Riordan et al., 1989).

BIOLOGY OF CFTR MUTATION: TRADITIONAL CLASSIFICATION

CF is caused by ~2000 mutations in the CFTR gene with a wide range of disease severity (www.genet.sickkids.on.ca/home.html; www.cfr2.org; Sosnay et al., 2013), which is further influenced by modifier genes (Collaco and Cutting, 2008; Cutting, 2010) and by the environmental and socioeconomic status of patients (Schechter et al., 2001; Barr et al., 2011; Taylor-Robinson et al., 2014; Kopp et al., 2015). The first classification of CF mutations into four classes according to their primary biological defect was proposed by Welsh and Smith in a landmark paper (Welsh and Smith, 1993). Currently, six major classes are distinguished (Rowe et al., 2005; Zielenksi and Tsui, 1995) (Figure 1).

Class I encompasses frameshift, splicing, or nonsense mutations that introduce premature termination codons (PTC), resulting in severely reduced or absent CFTR expression.

Class II mutations lead to misfolding, premature degradation by the endoplasmic reticulum (ER) quality-control system, and impaired protein biogenesis, severely reducing the number of CFTR molecules that reach the cell surface.

Class III mutations impaire the regulation of the CFTR channel, resulting in abnormal gating characterized by a reduced open probability.

Class IV mutations alter the channel conductance by impeding the ion conduction pore, leading to a reduced unitary conductance (Sheppard et al., 1993; Hammerle et al., 2001).

Class V mutations do not change the conformation of the protein but alter its abundance by introducing promoter or splicing abnormalities (Highsmith et al., 1994, 1997; Zielenksi and Tsui, 1995).

Class VI mutations destabilize the channel in post-ER compartments and/or at the plasma membrane (PM), by reducing its conformational stability (Haardt et al., 1999) and/or generating additional internalization signals (Silvis et al., 2003). This results in accelerated PM turnover and reduced apical PM expression (Haardt et al., 1999; Silvis et al., 2003).

For many of the identified mutations, the disease liability is unknown, but efforts are under way to assess their functional consequence and clinical severity (www.cfr2.org; Sosnay et al., 2013).

MUTATION CLASS–SPECIFIC PHARMACOTHERAPY

Defining the cellular and molecular pathology of CFTR mutations proved to be invaluable for development of small-molecule compounds targeting the underlying defect(s) in CF. The fact that some CFTR variants carrying class III or IV mutations can be expressed at the apical membrane of secretory epithelia at a density similar to that of the wild-type protein, although they are functionally impaired (e.g., G551D), led to the development of gating potentiators that increase the open probability and thereby the PM chloride conductance (Yang et al., 2003). VX-770 (ivacaftor) is the first potentiator drug to be U.S. Food and Drug Administration approved for CF treatment; it directly targets the gating defect of the class IV mutation ΔF508-CFTR (Van Goor et al., 2009). This compound was developed by Vertex Pharmaceuticals in conjunction with Cystic Fibrosis Foundation Therapeutics, Inc. (CFFT), and shows remarkable clinical benefit in patients carrying the mutation in either one or two alleles (Van Goor et al., 2009; Accurso et al., 2010; Ramsey et al., 2011). The approval of VX-770 was extended to eight additional class III mutations (G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P, and G1349D) (Yu et al., 2012; Vertex, 2014a) and recently to the class IV mutation R117H (Vertex, 2014b).

The prototypical class II mutation, ΔF508-CFTR (Phe508del), elicits a complex folding defect that compromises both NBD1 stability and the channel's cooperative domain assembly (Du and Lukacs, 2009; Du et al., 2005; Mendoza et al., 2012; Rabehe et al., 2012). For many years, large-scale efforts have been under way to isolate correctors that act as pharmacological chaperones by directly binding to and promoting the biogenesis of class II CFTR mutations. The most promising corrector compound at present, VX-809 (lumacaftor), partially reverts the ΔF508-CFTR functional expression...
Most common mutant has multiple defects that extend beyond the features of a class II/III mutation.

- **W1282X**: This PTC represents a class I mutation, though recent studies suggest a more complex phenotype. First, the level of the W1282X transcript is reduced by nonsense-mediated RNA decay (Hamosh et al., 1992; Linde et al., 2007). Second, the PTC disrupts part of the NBD2, which likely compromises NBD1-NBD2 dimerization and W1282X-CFTR folding and activity. Moreover, if the primary defect is corrected either with spontaneous or drug-induced read-through, some of the fully translated channel will contain nonconservative amino acid substitutions. These missense mutations may cause structural defects (class II characteristic), as suggested by the phenotype of CF patients with a missense mutation at the W1282 residue (Faucz et al., 2007; Ivaschenko et al., 1993; Visca et al., 2008), as well as a gating defect (class III characteristic), which can be inferred based on W1282X-CFTR channel activation after exposure to VX-770 (Xue et al., 2014).

- **P67L**: P67L is a mild class II mutation that results in attenuated CFTR biogenesis, as indicated by the reduced ratio between post-ER complex–glycosylated (band C) and ER-resident core–glycosylated protein (band B) (Ren et al., 2013; Sosnay et al., 2013; Van Goor et al., 2014). Treatment with the corrector VX-809 increases the abundance of the complex-glycosylated form and PM density to nearly the level of WT-CFTR (Ren et al., 2013; Veit et al., 2014). However, the mutant channel is also sensitive in vitro to potentiator treatment (a class III characteristic), both in the presence and absence of corrector (Van Goor et al., 2014; Veit et al., 2014). Accordingly, treatment with VX-770 ameliorated the CF lung disease in a heterozygous P67L/ΔF508 patient (Yousef et al., 2015).

- **R117H**: This mutation in conjunction with the 5T variant in the polythymidine tract in intron 8 was originally categorized as a class IV mutation, but it also exhibits a gating defect (class III trait) that, at least in part, can be rectified by VX-770 treatment (Sheppard et al., 1993; Van Goor et al., 2014). The R117H mutation also results in reduced complex-glycosylated CFTR expression, which is a class II characteristic (Fanen et al., 1997; Sheppard et al., 1993). This potentially explains the limited success of VX-770 treatment in patients carrying this mutation (Char et al., 2014; Moss et al., 2015).

AN EXPANDED CLASSIFICATION OF MUTANT CFTR BIOLOGY

We propose a modification of the current classification scheme, which would entail permutations of the traditional class I–VI CF mutations. This expanded classification of the major mechanistic categories (Welsh and Smith, 1993; Zielenki, 2000; Rowe et al., 2005) accommodates the unusually complex, combinatorial molecular/cellular phenotypes of CF alleles. It consists of 31 possible classes of mutations, including the original classes I, II, III/IV, V, and VI, as well as their 26 combinations, as depicted in the Venn diagram shown in Figure 2. For the sake of simplicity, class III and IV mutations, representing functional (gating and conductance, respectively) defects, are combined. For example, according to the expanded classification, G551D will be designated as a class III mutation as before (Welsh and Smith, 1993), while ΔF508 will be classified as class II–III–VI, W1282X as class I–II–III–VI, P67L as class II–III, and R117H as class II–III/IV, reflecting the composite defects in mutant CFTR biology (Figure 2 and Table 1).
A recent study by Vertex Pharmaceuticals successfully demonstrated that 24 of 54 tested missense mutations display both a processing (class II) and gating (class III) defect in the Fischer rat thyroid epithelial expression system (Van Goor et al., 2014). Characterization of several rare CF mutations is ongoing in laboratories of the CFTR2 Consortium, the CFTR Folding Consortium, CFFT, Vertex Pharmaceuticals, and many others (Caldwell et al., 2011; Yu et al., 2012; Sosnay et al., 2013; Harness-Brumley et al., 2014; Hong et al., 2014; Van Goor et al., 2014; Wang et al., 2014; Awatade et al., 2015). This work will likely provide further examples of combinatorial mechanistic defects exhibited by CF mutants.

THERAPEUTIC SUSCEPTIBILITY OF CF MUTATIONS WITH COMPLEX BIOLOGICAL DEFECTS

In-depth analysis of the biology of CF mutants distinguishes them according to their complex molecular pathology and suggests drug combinations for treatment of different patient populations. This process, called

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.

<table>
<thead>
<tr>
<th>Refined classification</th>
<th>Mutation</th>
<th>I</th>
<th>II</th>
<th>III/IV</th>
<th>V</th>
<th>VI</th>
<th>Model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-II-III-VI</td>
<td>W1282X</td>
<td>X1,2,3</td>
<td>X2,5</td>
<td>X2,4,5</td>
<td>X5</td>
<td></td>
<td>1HNE</td>
<td>Hamosh et al., 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2HBE</td>
<td>Cyrlab, unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2CFBE</td>
<td>unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3Xue et al., 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4Lukacs lab, unpublished</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td>II-III</td>
<td>M1V</td>
<td>X6</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>E56K</td>
<td>X6,6</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>5CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>P67L</td>
<td>X6</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2CFBE</td>
<td>Veit et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3HeLa</td>
<td>Ren et al., 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4Sosnay et al., 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10FRT</td>
<td>Sorscher lab, unpublished</td>
</tr>
<tr>
<td>II-III</td>
<td>R74W</td>
<td>X6</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>E92K</td>
<td>X3,5,6,8,16</td>
<td>X5</td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>unpublished</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5CFBE</td>
<td>unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5HEK293</td>
<td>Ren et al., 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16HEK293</td>
<td>Brodsky lab, unpublished</td>
</tr>
<tr>
<td>II-III</td>
<td>P99L</td>
<td>X11</td>
<td>X11</td>
<td></td>
<td></td>
<td></td>
<td>11HeLa</td>
<td>Sheppard et al., 1996</td>
</tr>
<tr>
<td></td>
<td>D110H</td>
<td>X6</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>R117C</td>
<td>X6</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>R117H</td>
<td>X2,3,12,13</td>
<td>X2,6,12</td>
<td></td>
<td></td>
<td>3HBE</td>
<td>Cyrlab, unpublished</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2CFBE</td>
<td>unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12FRT, HeLa</td>
<td>Sheppard et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13HeLa</td>
<td>Fanen et al., 1997</td>
</tr>
</tbody>
</table>

Continues
<table>
<thead>
<tr>
<th>Refined classification</th>
<th>Mutation</th>
<th>I</th>
<th>II</th>
<th>III/IV</th>
<th>V</th>
<th>VI</th>
<th>Model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>II–III</td>
<td>R170G</td>
<td>X²,₁₄</td>
<td>X⁷</td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Veit et al., 2014</td>
</tr>
<tr>
<td></td>
<td>E193K</td>
<td>X⁶</td>
<td></td>
<td>X₅,₆</td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Lokacs lab, unpublished</td>
</tr>
<tr>
<td></td>
<td>P205S</td>
<td>X¹¹</td>
<td>X¹¹</td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>L206W</td>
<td>X²,₆,₈</td>
<td>X³,₆</td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Sheppard et al., 1996</td>
</tr>
<tr>
<td>II–III</td>
<td>V232D</td>
<td>X¹⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEK293</td>
<td>Caldwell et al., 2011</td>
</tr>
<tr>
<td></td>
<td>R334W</td>
<td>X²,₃,₅</td>
<td>X²,₅,₆,₁₂</td>
<td></td>
<td></td>
<td>COS-7</td>
<td>Cyr lab, unpublished</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I336K</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>T338I</td>
<td>X⁵,₆</td>
<td>X⁵,₆</td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>S341P</td>
<td>X⁵,₆</td>
<td></td>
<td>X³,₅,₆</td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>A455E</td>
<td>X²,₆,₁₆,₁₇</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Frizzell lab, unpublished</td>
</tr>
<tr>
<td></td>
<td>S549R</td>
<td>X³,₅,₁₈</td>
<td>X⁵,₁₈</td>
<td></td>
<td></td>
<td></td>
<td>HEK293</td>
<td>Sheppard et al., 1995</td>
</tr>
<tr>
<td></td>
<td>D579G</td>
<td>X⁵,₆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Frizzell lab, unpublished</td>
</tr>
<tr>
<td></td>
<td>R668C</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>L927P</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>S945L</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>S977F</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>L997F</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>H1054D</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>R1066H</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>A1067T</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>R1070Q</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>R1070W</td>
<td>X⁶,₁₄</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>F1074L</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHK</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td></td>
<td>D1270N</td>
<td>X⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRT</td>
<td>Van Goor et al., 2014</td>
</tr>
<tr>
<td>II–VI</td>
<td>S492F</td>
<td>X³,₅,₆</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Frizzell lab, unpublished</td>
</tr>
<tr>
<td></td>
<td>R347P</td>
<td>X³,₅,₆</td>
<td>X³,₆,₁₂</td>
<td></td>
<td></td>
<td>CFBE</td>
<td>Van Goor et al., 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔF508</td>
<td>X¹⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COS</td>
<td>Cheng et al., 1990</td>
</tr>
</tbody>
</table>

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.
TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.

<table>
<thead>
<tr>
<th>Refined classification</th>
<th>Mutation</th>
<th>I</th>
<th>II</th>
<th>III/IV</th>
<th>V</th>
<th>VI</th>
<th>Model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>II–III–VI</td>
<td>A561E</td>
<td>X6,22,23</td>
<td>X23</td>
<td>X23</td>
<td>6FRTd</td>
<td>22HBEd</td>
<td>23BHK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L1077P</td>
<td>X3,6,16,24</td>
<td>X24</td>
<td>X24</td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>N1303K</td>
<td>X2,3,5,6,16,22,24</td>
<td>X24</td>
<td>X5</td>
<td>1HBE</td>
<td>3CFBE</td>
<td>5CFBE</td>
<td>6FRT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16HEK293</td>
<td>22HBE</td>
<td>24CHO</td>
<td></td>
</tr>
<tr>
<td>III–VI</td>
<td>Q1411X</td>
<td>X25</td>
<td></td>
<td>X26</td>
<td>25BHK</td>
<td>26Cos, BHK</td>
<td>6Van Goor et al., 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A46D</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>G85E</td>
<td>X3,6,16,24</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>R352Q</td>
<td>X5,6</td>
<td></td>
<td></td>
<td></td>
<td>5CFBE</td>
<td>6FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>L467P</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>V520F</td>
<td>X3,6,16</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>A559T</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>R560T</td>
<td>X3,6,16</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>R560K</td>
<td>X3</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>6FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>Y569D</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>D614G</td>
<td>X3</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>L1065P</td>
<td>X3,6</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>R1066C</td>
<td>X3,6</td>
<td></td>
<td></td>
<td></td>
<td>3CFBE</td>
<td>4FRT</td>
<td>16HEK293</td>
</tr>
<tr>
<td></td>
<td>R1066M</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>H1085R</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>M1101K</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>D110E</td>
<td>X6</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>16HEK293</td>
<td>24CHO</td>
</tr>
<tr>
<td></td>
<td>G178R</td>
<td>X18</td>
<td></td>
<td></td>
<td></td>
<td>18FRT</td>
<td>18Yu et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R347H</td>
<td>X6,7</td>
<td></td>
<td></td>
<td></td>
<td>6FRT</td>
<td>18FRT</td>
<td>18Yu et al., 2012</td>
</tr>
<tr>
<td></td>
<td>S549N</td>
<td>X18</td>
<td></td>
<td></td>
<td></td>
<td>18FRT</td>
<td>18FRT</td>
<td>18Yu et al., 2012</td>
</tr>
<tr>
<td></td>
<td>G551D</td>
<td>X27, 28</td>
<td></td>
<td></td>
<td>27CHO</td>
<td>28L</td>
<td>27Bompardere et al., 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G551S</td>
<td>X18</td>
<td></td>
<td></td>
<td></td>
<td>18FRT</td>
<td>18FRT</td>
<td>18Yu et al., 2012</td>
</tr>
</tbody>
</table>

Continues
“theratyping” (Cutting, 2015), will pave the way to personalized medicine in CF. However, reliable prediction of the responsiveness of a mutant phenotype to pharmacotherapy could be challenging and is dependent on the cellular model system (Pedemonte et al., 2010).

Emerging evidence also suggests that the efficacy of approved and preclinical drugs may vary with different mutations within the same class. For example, while nearly complete processing correction of P67L- and R170G-CFTR (class II) was achieved with VX-809 treatment (Okiyoneda et al., 2013; Ren et al., 2013; Veit et al., 2014), VX-809 only partially reversed the folding defect of some other class II mutants; for example, N1303K and AF508 (Okiyoneda et al., 2013; Awatade et al., 2015). This differential susceptibility to correction is attributed to the nature of the primary folding/structural defect. According to one hypothesis, robust folding correction of AF508-CFTR requires corrector combinations to avert its NBD1-MSD1/2 interface and NBD1 stability defects (Mendoza et al., 2012; Rabeh et al., 2012; He et al., 2013; Okiyoneda et al., 2013). The N1303K mutation in NBD2 was not rescued by VX-809, and only modest processing was observed by targeting both the NBD1/MSDs and NBD2 interfaces with C4 and C18 (a VX-809 analogue) (Okiyoneda et al., 2013; Rapino et al., 2015).

Some of the class III mutations also respond differently to the gating potentiator VX-770. Although R347H- and T338I-CFTR cause severe functional defects with no or modest loss of protein expression, only R347H-CFTR is potentiated by VX-770 to near wild type-like conductance (Van Goor et al., 2014). Likewise, the P5 potentiator activates AF508-CFTR, but it has no effect on G551D-CFTR chloride permeation (Yang et al., 2003). Thus identification of mutation-specific novel potentiators or their combinations may further optimize channel rescue for specific class III/IV mutations. Additive enhancement of G551D-CFTR activity by the combination of the potentiators genistein and curcumin supports the feasibility of combining potentiators (Yu et al., 2011). Likewise, we envision that mutation-specific read-through drugs will ultimately need to be combined with other correctors and potentiators, based on the pleiotropic defects associated with this class of mutations (as illustrated for W1282X above).

CONCLUDING REMARKS

The ultimate goal of theratyping is to achieve optimal correction of a specific mutant defect by selecting the most efficacious CFTR modulator(s), including corrector(s), potentiator(s), and/or read-through drugs, or a combination of these drugs. Based on accumulating observations, however, mechanistic subdivisions of some of the major classes of mutations (classes I, II, and III) may be necessary to further improve the success of drug-selection strategies. This will facilitate the theratyping of CF alleles and their combinations and expedite the identification and approval process for combination therapies. Theratyping has already proven successful in identifying class III mutations that are responsive to VX-770 (Yu et al., 2012), leading to the approval of this drug for eight rare mutations besides G551D (Vertex, 2014a). In fact, the results of large-scale theratyping could be overlaid as a third dimension on the Venn diagram presented in Figure 2.

Thus, during the 22 years following the initial classification of CF mutations (Welsh and Smith, 1993), our understanding of the molecular complexity of CF alleles has evolved remarkably, establishing the need for an advanced mutation classification scheme in conjunction with personalized CF therapy.

ACKNOWLEDGMENTS

We thank the members of the CFTR Folding Consortium, the CFTR Theratype Group, C. M. Penland, and K. Tuggle (Cystic Fibrosis Foundation, Bethesda, MD) for their valuable support. The work described here was supported by the following institutions and grants: National Institutes of Health (NIH) NOI-HL28187 and IAA-A-HL-14-007.001 to H.B.P.; Cystic Fibrosis Foundation (CFF), NIH DK51870, TRDRP23RT-0012, and HL095524 to W.E.B.; NIH R01 DK, CFF CUTT13A1, and CUTTXX0 to G.R.C.; CFF SHEPPA14XX0 and Cystic Fibrosis Trust to D.N.S.; NIH R01-DK068196, P30-DK072506, R01-DK068196, P30-DK072506.
REFERENCES

Huang X, Waltz D, Patel NR, Rodman D (2014). A CFTR corrector (lumacafor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del-CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2, 527–536.

