About this item:

739 Views | 795 Downloads

Author Notes:

Correspondence and requests for materials should be addressed to C.P.H.E. (email: coen@biology.sdu.dk).

These authors contributed equally to this work: J.H. Rasmussen, C.T. Herbst & D.N. Düring

C.P.H.E. conceived the study and built the set-up.

All authors contributed to data acquisition: pigeon (C.P.H.E., J.H.R., C.T.H., D.N.D., J.G.Š.), Barbary dove (C.P.H.E.), ostrich (N.S., C.P.H.E.), tinamou (S.A.Z., H.B., C.P.H.E.), cockatiel (O.N.L., C.P.H.E.), Bengalese finch (K.S., S.J.S., C.P.H.E.) and zebra finch (D.N.D., C.P.H.E.).

CT scans were performed by D.N.D. and M.D., data annotation by D.N.D.

All authors contributed to data analysis and the manuscript. All authors read and approved the final manuscript.

We thank T. Christensen, P. Martensen, F. Mortensen, F. Andreasen, A. Chandler, V. Shanbogue and N. Ditzel for technical assistance, J. Brewer for optics advice, L. Jakobsen for use of equipment, S. Pedersen for ostrich access, A. Qiu for videokymography advice and M. Rothenberg for EGG advice.

H. Mehaffey, J.M. Ratcliffe and A. Surlykke commented on the manuscript.

Subjects:

Research Funding:

This study was funded by grants from the Danish Research Council (FNU), Carlsberg Foundation, visiting professorship (Université de Saint-Etienne) and QuanTM fellowship (Emory University) to C.P.H.E., a Heisenberg Fellowship of the German Research Foundation (Br 2309/8-1) to H.B., US National Institutes of Health grants F31DC013753 to K.S., P30NS069250 and R01NS084844 to S.J.S., European Social Fund and the state budget of the Czech Republic, project numbers OPVK CZ.1.07/2.3.00/30.0004 ‘POST-UP’ to C.T.H. and J.G.Š., the institutional fund of Palacký University Olomouc to C.T.H. and OPVK CZ.1.07/2.3.00/20.0057 to J.G.Š.

Keywords:

  • Biological sciences
  • Zoology

Universal mechanisms of sound production and control in birds and mammals

Show all authors Show less authors

Tools:

Journal Title:

Nature Communications

Volume:

Volume 6

Publisher:

, Pages 8978-8978

Type of Work:

Article | Final Publisher PDF

Abstract:

As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans.

Copyright information:

© 2015, Nature Publishing Group, a division of Macmillan Publishers Limited.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Creative Commons License

Export to EndNote