Risk factors associated with loss to follow-up among multidrug-resistant tuberculosis patients in Georgia

G. Kuchukhidze, National Centre for Disease Control and Public Health
A. M. V. Kumar, International Union Against Tuberculosis and Lung Disease
P. de Colombani, World Health Organization
M. Khogali, Médecins Sans Frontières (MSF)
U. Nanava, National Center for Tuberculosis and Lung Diseases
Henry Blumberg, Emory University
Russell Ryan Kempker, Emory University

Copyright information:
© 2014 The Union
This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/), which permits making multiple copies, distribution, public display, and publicly performance, distribution of derivative works, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author, copyright and license notices be kept intact.

Accessed January 27, 2021 11:02 PM EST
Risk factors associated with loss to follow-up among multidrug-resistant tuberculosis patients in Georgia

G. Kuchukhidze,1 A. M. V. Kumar,2 P. de Colombani,3 M. Khogali,4 U. Nanava,5 H. M. Blumberg,6 R. R. Kempker6

http://dx.doi.org/10.5588/pha.14.0048

Multidrug-resistant tuberculosis (MDR-TB), defined as resistance to at least isoniazid and rifampicin, is a major threat to tuberculosis (TB) control and, as mentioned in the 2013 World Health Organization (WHO) global tuberculosis report, the world is ‘off track’ in achieving targets for MDR-TB treatment.1 There were an estimated 450000 new cases of MDR-TB worldwide in 2012, and the reported treatment success rate was only 48%.1 Among MDR-TB patients with poor treatment outcomes, the majority were due to loss to follow-up (LFU) during treatment (previously termed treatment default).2 According to the WHO, LFU is defined as an interruption of anti-tuberculosis treatment at the time of LFU. In multivariate analysis, the factors associated with LFU included male sex, illicit drug use, tobacco use, history of previous anti-tuberculosis treatment, site of TB disease, and place and year of initiating treatment.

The specific objectives of this study were to assess, among MDR-TB patients in Georgia, 1) the proportion of patients lost to follow-up, 2) time of LFU, 3) culture conversion status at LFU, and 4) characteristics associated with LFU. This information will help prioritise future public health interventions aimed at reducing LFU and halting the spread of MDR-TB.

AFFILIATIONS
1 National Centre for Disease Control and Public Health, Tbilisi, Georgia
2 International Union Against Tuberculosis and Lung Disease, South-East Asia Regional Office, New Delhi, India
3 World Health Organization Regional Office for Europe, Copenhagen, Denmark
4 Department of Epidemiology, Operational Center of Brussels, Médecins Sans Frontières (MSF), MSF-Belgium, Addis Ababa, Ethiopia
5 Department of Epidemiology, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
6 Emory University School of Medicine, Atlanta, Georgia, USA

CORRESPONDENCE
Giorgi Kuchukhidze
HIV/AIDS, Hepatitis, STI & TB Surveillance Department National Center for Disease Control and Public Health
9 Ataniani St, Tbilisi 0177 Georgia
Tel: (+995) 599 363 601
e-mail: g.kuchukhidze@ncdc.ge

KEY WORDS
public health action; SORT IT; Eastern Europe; loss to follow-up; MDR-TB

METHODS

Setting
The Ministry of Health oversees TB control in Georgia (population 4.5 million),7 and TB diagnosis and treatment is provided free of charge for the patients through the National Centre for Tuberculosis and Lung Diseases (NCTLD, Tbilisi, Georgia). The Global Fund to Fight AIDS, Tuberculosis and Malaria (Geneva, Switzerland) funds the procurement of quality-assured anti-tuberculosis drugs through the GDF mechanism. Second-line drug (SLD) regimens were individualised based on drug susceptibility testing (DST) results, guided by WHO criteria.8 The regimens were designed to include four or more active drugs based on the DST results, and included a fluoroquinolone and an injectable. According to country guidelines, an injectable

countries.1 In 2012, MDR-TB prevalence was respectively 11% and 32% among new and retreatment TB cases. In 2009, with the assistance of the Green Light Committee (GLC), Georgia became one of the first lower-middle-income countries to provide universal access to diagnosis and treatment of MDR-TB. However, initial MDR-TB treatment outcomes were suboptimal. In an analysis of the first cohort of MDR-TB patients in Georgia who started treatment in 2009, 22% of patients were lost to follow-up.4 LFU rates were also high, at 20%, in a more recent cohort of children receiving treatment for MDR-TB in Georgia.5

LFU rates in Georgia are similar to the high rates reported among MDR-TB patients globally.6 These very high rates highlight the challenges of adherence to treatment and treatment completion among MDR-TB patients for National TB Programmes (NTP) worldwide. Understanding the risk factors associated with LFU would help NTPs to plan effective interventions for addressing this problem. This was the basis for the present study, along with a 2013 directive of the GLC and Global Drug Facility (GDF) Joint Country Mission that recommended an updated strategy to reduce the high LFU among patients with MDR-TB.

The specific objectives of this study were to assess, among MDR-TB patients in Georgia, 1) the proportion of patients lost to follow-up, 2) time of LFU, 3) culture conversion status at LFU, and 4) characteristics associated with LFU. This information will help prioritise future public health interventions aimed at reducing LFU and halting the spread of MDR-TB.
agent was given for a minimum of 8 months. All treatment is given by directly observed therapy (DOT). In 2008–2012, food vouchers were given to patients with MDR-TB receiving out-patient treatment; however, the voucher programme was discontinued in January 2013. As standard of care in Georgia, patients with confirmed MDR-TB are admitted to an MDR-TB ward at one of four TB hospitals for the initiation of the intensive phase of treatment. Patients are recommended, but not required, to remain hospitalised at least until their sputum smears convert to negative. After discharge, patients with MDR-TB are referred to out-patient TB units (TB clinics) for the continuation phase of treatment. TB medications are delivered to TB units by NCTLD coordinators. The patient visits the clinic to receive DOT from a nurse.

Study design, population and period

A retrospective cohort study design was utilised. All patients in the country of Georgia with MDR-TB and registered in the civil sector for treatment at the NCTBLD in Tbilisi, Georgia, and affiliated centres throughout the country from January 2009 to December 2011 were included in the study.

Laboratory

Culture and DST were performed at the Georgian National TB Reference Laboratory. All patients had DST-confirmed MDR-TB. Sputum cultures were performed monthly until three consecutive negative culture results had been obtained, and then every 3 months until treatment completion. For all *Mycobacterium tuberculosis*-positive sputum cultures, first- and second-line DST were performed using the absolute and proportion concentration methods, respectively, as previously described.8

Data management and analysis

All data were extracted from the electronic National TB Surveillance database. Variables collected included treatment start and completion dates, patient demographics, history of incarceration, drug use, comorbidities, history of anti-tuberculosis treatment, culture conversion dates and treatment outcomes (per WHO definitions).9 Analyses were performed using Stata v12.1 (Stata Corp, College Station, TX, USA) and SAS v9.3 (Statistical Analysis System Institute Inc, Cary, NC, USA). Descriptive statistics were used to determine time to LFU among patients with MDR-TB, and to compare characteristics between patients with LFU and those with a successful outcome (defined as cure or completed treatment). Patients with extensively drug-resistant TB, or those who died, failed treatment or were transferred out, were not included in the analysis. A Cox proportional hazards model was used to assess risk factors for time to LFU. An alternative Cox proportional hazards model comparing LFU vs. all other treatment outcomes (including those who died or failed treatment) was also performed. Model building and selection were based on purposeful selection of covariates, as previously described.10

Ethics

The study was approved by the Ethics Advisory Group of the International Union Against Tuberculosis and Lung Disease, Paris, France, and the Institutional Review Boards of the National Center for Disease Control and Public Health (NCDC) in Tbilisi, Georgia, and Emory University in Atlanta, GA, USA.

RESULTS

During 2009–2011, 1593 patients were initiated on MDR-TB treatment in Georgia, of whom 458 (29%) were lost to follow-up. Of the 1593 patients, 353 (22%) were excluded from data analysis for the following reasons: extensively drug-resistant TB (defined as MDR-TB plus resistance to a fluoroquinolone and an injectable), treatment failure, transfer out, death, and either no final outcome available or missing data (Figure 1). A total of 1240 patients were thus included in the analysis of risk factors for LFU. Of these, 845 had a successful outcome and 395 were lost to follow-up.

The demographic and disease characteristics of the MDR-TB patients included (n = 1240) are summarised in Table 1. Among the overall cohort, the majority of patients were male (73%); the mean age was 36.2 years. The proportion of previously treated patients (57%) was high, and approximately one fifth had a history of incarceration. Over one third of patients reported use of alcohol (34%) or tobacco (36%), while the rate of illicit drug use (4%) and co-infection with the human immunodeficiency virus (3%) was low. A similar number of patients initiated treatment in 2009 (n = 420) and 2011 (n = 428), with a slight dip in 2010 (n = 382). Approximately half of all patients initiated treatment in Tbilisi, with the rest receiving treatment in other regions of Georgia.

There were numerous differences in characteristics among those lost to follow-up vs. patients with a favourable outcome (Table 1). Patients who were lost to follow-up were significantly more likely to be male (81% vs. 69%), have a history of incarceration (26% vs. 15%), illicit drug use (6% vs. 3%), tobacco use (44% vs. 32%), to have received previous anti-tuberculosis treatment (62% vs. 54%), have pulmonary disease (96% vs. 91%) and have baseline smear-positive results (70% vs. 58%) than patients with a favourable outcome. The culture conversion rate at 2 months was also significantly lower in LFU patients vs. those with a favourable outcome (18% vs. 26%, respectively).

With regard to timing of LFU, the median time of follow-up among patients lost to follow-up was 10 months (interquartile range 5–17); 161 patients (41%) were lost to follow-up during the first 8 months of MDR-TB treatment, 81 (20%) during the next 9–12 months and 152 (39%) after 12 months of initiating MDR-TB treatment (Figure 2). At the time of LFU, 61% of patients (241/395) had achieved culture conversion. The culture conversion rate at the time of LFU was much lower in patients interrupting treatment during the early period (37%) than compared to those lost to follow-up from 9 to 12 months (73%) or after 12 months (80%) of starting MDR-TB treatment (Figure 3).
The results of the univariate and multivariate survival analyses for risk factors for time to LFU are shown in Table 2. In multivariate analysis, factors associated with LFU included male sex, illicit drug use, tobacco use, history of previous anti-tuberculosis treatment, site of TB disease, and place and year of initiating treatment. Achieving culture conversion at 2 months (hazard ratio 0.76, 95%CI 0.59–0.99) had a protective effect against LFU. The alternative model comparing LFU vs. all other treatment outcomes found similar results (results not shown); however, unknown illicit drug use status and culture conversion at month 2 were no longer significant in multivariate analysis.

DISCUSSION

In this study, we found that 29% of all patients initiating treatment for MDR-TB during 2009–2011 were lost to follow-up during treatment, and that 40% had not achieved culture conversion at the time of LFU. A similarly high rate of LFU among MDR-TB patients has been demonstrated in other studies, and these data together illustrate the immense challenges in achieving completion of currently recommended SLD regimens for MDR-TB. Our LFU rate was also substantially higher than the WHO recommended target of 5%. We identified a combination of various patient and treatment characteristics that were associated with LFU; reducing LFU will take a multipronged approach targeting multiple elements.

About 40% of LFU occurred early during the intensive phase (first 8 months), and two thirds of these patients were culture-positive at the time of LFU. While a previous study from Peru found the same rate of culture positivity (40%) at the time of LFU, no other studies have reported on the rate of culture conversion at the time of LFU. Given the higher rates of culture positivity, patients with early LFU are at a higher risk of spreading MDR-TB disease in the community and of having a poor long-term outcome. Furthermore, the reasons for LFU are likely to be different. Adverse events may be more likely to be responsible for LFU during the intensive phase of treatment, when patients are receiving an injectable agent. Previous studies evaluating severe adverse events during MDR-TB treatment found that approximately 65% occur in the first 6 months of treatment. Unfortunately, there is no standard system for reporting drug-related adverse events or management in Georgia. The only insight available comes from a United States Agency for International Development TB Prevention Project in Georgia, in which MDR-TB patients who were lost to follow-up were contacted and interviewed. The study found that 50% of patients with MDR-TB reported treatment-related side effects as the most important reason for LFU. As injectable agents and current SLDs will likely continue to be used for at least the next few years, proper reporting and management of adverse events is an essential component of MDR-TB treatment.

Our study identified several patient characteristics that were associated with a higher risk of LFU. The use of illicit drugs was probably underreported in our study, although it showed a statistically significant association with LFU. Excessive alcohol consumption was associated with LFU in univariate analysis; however, the definition of excessive alcohol consumption was not standardised and was evaluated by physicians subjectively. This was one of the main risk factors for interruption of and non-adherence to treatment in the study conducted in Tomsk oblast, Russia.

We recommend that all MDR-TB patients be screened routinely for the presence of the risk factors identified in this study; those who have these risk factors should be prioritised for intensive follow-up care. They should also be linked to other support services such as opioid substitution therapy, treatment of alcohol addiction and tobacco cessation services. While results on the effectiveness of patient incentives vary, cash incentives have been seen to perform better than non-cash incentives in improving patient adherence and retention. The country plans to re-launch its comprehensive package of adherence interventions (cash incentives) in 2014.

Two treatment-related factors associated with LFU were year and location of treatment initiation. Later year of treatment enrolment has been found to be associated with higher LFU rates in many studies and is thought to be secondary to a decreasing abil-
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Overall ((n = 1240))</th>
<th>Lost to follow-up ((n = 395))</th>
<th>Treatment success* ((n = 845))</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Male</td>
<td>903 (73)</td>
<td>320 (81)</td>
<td>583 (69)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>337 (27)</td>
<td>75 (18)</td>
<td>262 (31)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>36.2 (14)</td>
<td>37.2 (14)</td>
<td>35.8 (15)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>Married/living together</td>
<td>612 (49)</td>
<td>198 (50)</td>
<td>414 (49)</td>
<td></td>
</tr>
<tr>
<td>Not married</td>
<td>628 (51)</td>
<td>197 (50)</td>
<td>431 (51)</td>
<td></td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Unemployed</td>
<td>869 (70)</td>
<td>289 (73)</td>
<td>580 (69)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>371 (30)</td>
<td>106 (27)</td>
<td>265 (31)</td>
<td></td>
</tr>
<tr>
<td>History of incarceration</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>225 (18)</td>
<td>101 (26)</td>
<td>124 (15)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1015 (82)</td>
<td>294 (74)</td>
<td>721 (85)</td>
<td></td>
</tr>
<tr>
<td>Illicit drug use</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>51 (4)</td>
<td>23 (6)</td>
<td>28 (3)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1065 (86)</td>
<td>319 (81)</td>
<td>746 (88)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>124 (10)</td>
<td>53 (13)</td>
<td>71 (9)</td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Yes</td>
<td>424 (34)</td>
<td>154 (39)</td>
<td>270 (32)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>780 (63)</td>
<td>230 (58)</td>
<td>550 (65)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>36 (3)</td>
<td>11 (3)</td>
<td>25 (3)</td>
<td></td>
</tr>
<tr>
<td>History of tobacco use</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>443 (36)</td>
<td>175 (44)</td>
<td>268 (32)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>797 (64)</td>
<td>220 (56)</td>
<td>577 (68)</td>
<td></td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Positive</td>
<td>36 (3)</td>
<td>14 (4)</td>
<td>22 (3)</td>
<td></td>
</tr>
<tr>
<td>Not positive/unknown</td>
<td>1204 (97)</td>
<td>381 (96)</td>
<td>823 (97)</td>
<td></td>
</tr>
<tr>
<td>Type of patient</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>New</td>
<td>508 (41)</td>
<td>138 (35)</td>
<td>370 (44)</td>
<td></td>
</tr>
<tr>
<td>Previously treated</td>
<td>704 (57)</td>
<td>245 (62)</td>
<td>459 (54)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>28 (2)</td>
<td>12 (3)</td>
<td>16 (2)</td>
<td></td>
</tr>
<tr>
<td>Disease location</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Extra-pulmonary</td>
<td>83 (7)</td>
<td>13 (3)</td>
<td>70 (8)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>1151 (93)</td>
<td>380 (96)</td>
<td>771 (91)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>6 (0.5)</td>
<td>2 (1)</td>
<td>4 (1)</td>
<td></td>
</tr>
<tr>
<td>Baseline smear status</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Negative</td>
<td>395 (32)</td>
<td>97 (25)</td>
<td>298 (35)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>769 (62)</td>
<td>277 (70)</td>
<td>492 (58)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>76 (6)</td>
<td>21 (5)</td>
<td>55 (7)</td>
<td></td>
</tr>
<tr>
<td>Culture conversion at 2 months</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>292 (24)</td>
<td>71 (18)</td>
<td>221 (26)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>948 (76)</td>
<td>324 (82)</td>
<td>624 (74)</td>
<td></td>
</tr>
<tr>
<td>Treatment initiation, year</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>2009</td>
<td>430 (35)</td>
<td>126 (32)</td>
<td>304 (36)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>382 (31)</td>
<td>105 (27)</td>
<td>277 (33)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>428 (34)</td>
<td>164 (41)</td>
<td>264 (31)</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td><=18.5</td>
<td>340 (27)</td>
<td>106 (27)</td>
<td>234 (28)</td>
<td></td>
</tr>
<tr>
<td>>18.5</td>
<td>900 (73)</td>
<td>289 (73)</td>
<td>611 (72)</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Tbilisi</td>
<td>591 (48)</td>
<td>200 (51)</td>
<td>391 (46)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>649 (52)</td>
<td>195 (49)</td>
<td>454 (54)</td>
<td></td>
</tr>
</tbody>
</table>

* Cured and treatment completed.

IQR = interquartile range; SD = standard deviation; HIV = human immunodeficiency virus; BMI = body mass index.
High LFU among MDR-TB patients in Georgia

Public Health Action

FIGURE 2 Time to loss to follow-up among MDR-TB patients, Georgia, 2009–2011. MDR-TB = multidrug-resistant tuberculosis.

FIGURE 3 Rates of culture conversion among multidrug-resistant tuberculosis patients, Georgia, 2009–2011 (n = 395).

ity to provide individualised patient-centred care as the total MDR-TB cohort size increases.6,18 The HCW-patient ratio may decrease, and limited NTP financial resources are spread over an increasing number of patients. In Georgia, the total number of MDR-TB patients on treatment steadily increased from 2009 to 2011 and may have been responsible for higher LFU rates for the reasons given above. The NCTLD hospital and affiliated clinics in Tbilisi care for the majority of MDR-TB patients in the country, and for the reasons described, this may lead to a higher rate of LFU than in other regions, where more patient-centred, decentralised care is possible. An additional factor that is likely responsible in part for the higher LFU seen in 2011 is a recent trend of patients from former Soviet Union countries, including Georgia, seeking care in other countries. A 2013 report describes the high rate of Georgian MDR-TB patients seeking care in France, including 26 patients in 2012.19 These findings indicate an urgent need to evaluate patient perception of care in Georgia and find ways to improve MDR-TB management.

The main strengths of our study include a large population-based study cohort, the inclusion of culture conversion status at time of LFU, and adherence to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for reporting on observational studies.20 Limitations include use of retrospective, routine programme data, which may be subject to unrecognised errors, lack of information on adverse drug events and comorbidities, including diabetes and mental health

TABLE 2 Univariate and multivariate analysis evaluating risk factors for time to loss to follow-up among multidrug-resistant tuberculosis patients, Georgia, 2009–2011 (n = 1240)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Univariate analysis</th>
<th>Multivariate analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95%CI)</td>
<td>aHR (95%CI)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.69 (1.31–2.17)</td>
<td>1.37 (1.04–1.79)</td>
</tr>
<tr>
<td>Female</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Age, per year</td>
<td>1.01 (0.99–1.01)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>1.03 (0.84–1.25)</td>
<td></td>
</tr>
<tr>
<td>Not married</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>1.17 (0.93–1.46)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>History of incarceration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.67 (1.33–2.09)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Illicit drug use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.69 (1.11–2.58)</td>
<td>1.60 (1.04–2.46)</td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.52 (1.13–2.03)</td>
<td>1.38 (1.03–1.86)</td>
</tr>
<tr>
<td>Alcohol use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.25 (1.02–1.53)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1.05 (0.57–1.91)</td>
<td></td>
</tr>
<tr>
<td>History of tobacco use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.52 (1.25–1.85)</td>
<td>1.34 (1.08–1.66)</td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1.27 (0.74–2.16)</td>
<td></td>
</tr>
<tr>
<td>Not positive/unknown</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Type of patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Previously treated</td>
<td>1.34 (1.09–1.65)</td>
<td>1.35 (1.09–1.68)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.61 (0.89–2.91)</td>
<td>1.61 (0.86–2.93)</td>
</tr>
<tr>
<td>Disease location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra-pulmonary</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>2.19 (1.26–3.80)</td>
<td>2.03 (1.16–3.55)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2.21 (0.50–9.81)</td>
<td>1.93 (0.43–8.75)</td>
</tr>
<tr>
<td>Baseline smear status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>0.70 (0.56–0.89)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0.83 (0.53–1.29)</td>
<td></td>
</tr>
<tr>
<td>Culture conversion at 2 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.72 (0.56–0.93)</td>
<td>0.76 (0.59–0.99)</td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Treatment initiation, year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2010</td>
<td>0.92 (0.69–1.16)</td>
<td>0.92 (0.71–1.20)</td>
</tr>
<tr>
<td>2011</td>
<td>1.36 (1.07–1.71)</td>
<td>1.46 (1.14–1.85)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤18.5</td>
<td>0.97 (0.78–1.21)</td>
<td></td>
</tr>
<tr>
<td>>18.5</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tbilisi</td>
<td>1.19 (0.98–1.45)</td>
<td>1.30 (1.07–1.59)</td>
</tr>
<tr>
<td>Other</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Adjusted HRs are only presented for variables included in the multivariate model.

HR = hazard ratio; CI = confidence interval; aHR = adjusted HR; HIV = human immunodeficiency virus; BMI = body mass index.
disorders, which were not systematically documented. The absence of hospitalisation dates also prevented us from assessing the effect of duration of hospitalisation on LFU.

In conclusion, our study found an alarmingly high rate of LFU among MDR-TB patients and a high rate of culture positivity at the time of LFU. Patients who are lost to follow-up are a threat to the spread of disease in the community, and based on our results a multipronged strategy is needed to address this urgent problem.

The following country-specific recommendations could be made:

- To improve adverse drug reaction management by setting up a pharmacovigilance system linked to the electronic TB database
- To train HCWs in the management of side effects of anti-tuberculosis medicines
- Screening on risk factors identified by the study and intensive follow-up
- Incentives for patients and service providers
- Decentralisation of treatment facilities within Tbilisi to improve the HCW-patient ratio per treatment centre.

References
Факторы риска, связанные с потерей для дальнейшего наблюдения больных туберкулезом с множественной лекарственной устойчивостью в Грузии

G. Kuchukhidze, A. M. V. Kumar, P. de Colombani, M. Khogali, U. Nanava, H. M. Blumberg, R. R. Kempker

МЕСТО ПРОВЕДЕНИЯ: Грузия – страна с высоким бременем туберкулеза с множественной лекарственной устойчивостью (МЛУ-ТБ).

ЦЕЛЬ: Определить долю потерянных для наблюдения (ПДН) больных МЛУ-ТБ, находящихся на лечении в период с 2009 г. по 2011 г., и связанные с этими факторы риска.

ДИЗАЙН: Ретроспективное когортное исследование, предусматривающее изучение электронной базы данных эпидемиологического надзора Национальной программы борьбы с туберкулезом (НПП). Модель пропорциональных рисков Кокса использовалась для оценки факторов риска, влияющих на время до ПДН.

РЕЗУЛЬТАТЫ: Из 1593 больных 458 (29%) были потеряны для дальнейшего наблюдения. В окончательный анализ включены всего 1240 больных МЛУ-ТБ (845 с успешным исходом лечения, 395 ПДН). Более 40% случаев ПДН произошли в первые 8 месяцев лечения МЛУ-ТБ; у 40% больных для дальнейшего наблюдения больные МЛУ-ТБ были далеки от идеальной. Анализ первых когорт больных МЛУ-ТБ в Грузии, начавших лечение в 2009 г., показал, что 22% больных потеряны для дальнейшего наблюдения.

Показатели ПДН были также высокими - на уровне 20% в более поздней когорте детей, получавших лечение по поводу МЛУ-ТБ в Грузии.

Показатели ПДН больных в Грузии аналогичны высоким показателям ПДН больных МЛУ-ТБ в других странах Восточной Европы, включая Грузию, где в 2012 г. распространенность МЛУ-ТБ составила соответственно 11% и 32% среди впервые выявленных и ранее лечебных больных ТБ. В 2009 г. при поддержке Комитета зеленого света (КЗС) Грузия стала одной из первых стран на уровне развития среднего, обеспечившей всеобщий доступ к диагностике и лечению МЛУ-ТБ. Однако высокие результаты лечения МЛУ-ТБ были далеки от идеальной. Анализ первых когорт больных МЛУ-ТБ в Грузии, начавших лечение в 2009 г., показал, что 22% больных потеряны для дальнейшего наблюдения.

Потерянных для дальнейшего наблюдения больных МЛУ-ТБ в Грузии аналогично высоким показателям ПДН больных МЛУ-ТБ во всем мире. Эти высокие цифры подчеркивают проблемы Национальных программ борьбы с ТБ (НПП) во всем мире с сохранением приверженности больных МЛУ-ТБ лечению и завершением ими полного курса лечения. Понимание фактов риска, связанных с потерей больных для дальнейшего наблюдения, поможет НПП спланировать эффективные программы для решения этих проблем. Это послужило основой для проведения данного исследования, наряду с директивой совместной страновой миссии КЗС и Глобального механизма по обеспечению противотуберкулезными препаратами (GDF) от 2013 г., рекомендованной пересмотренной стратегией, направленной на уменьшение числа ПДН больных МЛУ-ТБ.

Ключевые слова: туберкулез, МЛУ-ТБ, потерянные для дальнейшего наблюдения, КЗС, GDF, НПП.
Высокий показатель ПДН больных МЛУ-ТБ в Грузии

МЕТОДЫ
Место проведения
Министерство здравоохранения контролирует борьбу с ТБ в Грузии (население 4,5 млн человек),7 услуги по диагностике и лечению ТБ предоставляются больным бес- платно через Национальный центр туберкулеза и болез- ней легких (НЦТБЛ, Тбилиси, Грузия). Глобальный фонд для борьбы со СПИДом, туберкулезом и малярией (Же- нева, Швейцария) финансирует зачетки качественных противотуберкулезных препаратов через механизм GDF.

Схемы лечения препаратами второго ряда (ПВР) были индивидуализированы в соответствии с результатами те- стов лекарственной чувствительности (ТЛЧ) согласно кри- териям ВОЗ.8 Схемы состояли из четырех или более актив- ных препаратов в соответствии с результатами ТЛЧ, а также включали фторхинолоны и инъекционный препарат. Открывались все данные из национальной электрон- ной системы Министерства здравоохранения Грузии, больных с отобранными диагнозами МЛУ-ТБ госпита- лизировались для прохождения интенсивной фазы лечения в МЛУ - отделение одной из четырех ТБ больниц. Больным рекомендуется, но они не обязаны, оставаться в стацио- наре как минимум до негативации мазка микроскопии мокроты. После выписки больные МЛУ-ТБ направляются в амбулаторные ТБ клиники для лечения на поддерживаю- щей фазе. Противотуберкулезные препараты доставля- ются в ТБ клиники координаторами НЦТБЛ. Больной посе- щает клинику для приема препаратов под непосредственным наблюдением медицинской сестры.

Результаты
В 2009–2011 гг. 1593 больных были взяты на лечение МЛУ-ТБ в Грузии, из которых 1585 (99%) были потеряны для дальнейшего наблюдения. Из 1593 больных 353 (22%) были исключены из анализа данных по следующим при- чинам: ТБ с широкой лекарственной устойчивостью (определяемый как МЛУ-ТБ плюс устойчивость к фторхи- нолонам и инъекционному препарату), неэффективное лечение, выбытие, смерть, окончательного результата нет, либо данные отсутствуют (рис. 1). Таким образом, всего 1240 больных вошли в анализ факторов риска ПДН. Из них у 845 исход лечения был благоприятным, а 395 были потери для дальнейшего наблюдения.

В таблице 1 представлены демографические и клини- ческие характеристики включенных больных МЛУ-ТБ (n = 1240). В когорте большинство больных были мужчины (73%); средний возраст составил 36,2 года. Доля пе- реученных больных (57%) была высокой, приблизительно каждый пятый отбывал наказание в местах лишения сво- боды. Третью больных употребляли алкоголь (34%) или ку- рили (36%), однако процент больных, потребляющих нар- котические средства (4%), и случаев сочетанной ВИЧ-инфекции (3%) был низким. Аналогичное число боль- ных было взято на лечение в 2009г. (n = 420) и в 2011г. (n = 428), число взятых на лечение в 2010г. было несколько ниже (n = 382). Приблизительно половина больных на- чали лечение в Тбилиси, остальные получили лечение в других областях Грузии.

Характеристики больных, ПДН и имеющих благоприят- ный исход лечения, во многом отличались (Таблица 1). Среди больных, потерянных для дальнейшего наблюде-
Все больные, начавшие лечение МЛУ-ТБ, Грузия, 2009–2011гг. (n = 1593)

Больные, исключенные из анализа (n = 353)
- ШЛУ-ТБ (n = 74)
- Неэффективное лечение (n = 50)
- Выбыл (n = 19)
- Умер в ходе лечения (n = 117)
- Нет результата лечения (n = 55)
- Данные о результате лечения отсутствуют (n = 38)

Больные МЛУ-ТБ, включенные в когорту исследования (n = 1240)

Благоприятный исход (n = 845)
Потеря для дальнейшего наблюдения (n = 395)

РИС. 1 Диаграмма когорты исследования. МЛУ-ТБ = туберкулез с множественной лекарственной устойчивостью; ШЛУ-ТБ = туберкулез с широкой лекарственной устойчивостью.

ОБСУЖДЕНИЕ

Наше исследование показало, что 29% всех больных, начавших лечение МЛУ-ТБ в течение 2009–2011гг., были потеряны для дальнейшего наблюдения во время лечения, и 40% являлись бактериовыделителями по посеву на момент ПДН. Другие исследования показали похожие высокие показатели ПДН больных МЛУ-ТБ,6 вместе эти данные наглядно показывают, насколько сложно добиться полного завершения обучения больными МЛУ-ТБ рекомендованных курсов лечения препарата второго ряда. Наш показатель ПДН был значительно выше рекомендованного ВОЗ целевого показателя 5%.

Что касается времени до ПДН, медиана времени наблюдения больных ПДН составила 10 месяцев (межквартильный диапазон 5–17); 161 больной (41%) был потерян для дальнейшего наблюдения в течение первых 8 месяцев лечения МЛУ-ТБ, 81 (20%) - в течение следующих 9–12 месяцев, и 152 (39%) - спустя 12 месяцев после начала лечения МЛУ-ТБ (рис. 2). На момент ПДН 61% больных (241/395) прекратили бактериовыделение по культуре. Показатель негативации культуры у больных ПДН был существенно ниже у больных ПДН, по сравнению с теми, исход лечения которых был благоприятным (18% против 26%, соответственно).

Что касается времени до ПДН, медиана времени наблюдения больных ПДН составила 10 месяцев (межквартильный диапазон 5–17); 161 больной (41%) был потерян для дальнейшего наблюдения в течение первых 8 месяцев лечения МЛУ-ТБ, 81 (20%) - в течение следующих 9–12 месяцев, и 152 (39%) - спустя 12 месяцев после начала лечения МЛУ-ТБ (рис. 2). На момент ПДН 61% больных (241/395) прекратили бактериовыделение по культуре. Показатель негативации культуры на момент ПДН был существенно ниже у больных, перерывших лечение в его начале (37%), чем у тех, кто был потерян для дальнейшего наблюдения спустя 9–12 месяцев (73%) или спустя более 12 месяцев (80%) от начала лечения МЛУ-ТБ (рис. 3).

Результаты одномерного и многомерного анализа факторов риска для времени до ПДН представлены в таблице 2. В многомерном анализе факторы, связанные с ПДН, включали: мужской пол, потребление наркотиков, табакокурение, лечение по поводу туберкулеза в анамнезе, локализацию ТБ, место и год начала лечения. Конверсия культуры через 2 месяца лечения также был существенно ниже у больных ПДН, по сравнению с теми, исход лечения которых был благоприятным (18% против 26%, соответственно).

Что касается времени до ПДН, медиана времени наблюдения больных ПДН составила 10 месяцев (межквартильный диапазон 5–17); 161 больной (41%) был потерян для дальнейшего наблюдения в течение первых 8 месяцев лечения МЛУ-ТБ, 81 (20%) - в течение следующих 9–12 месяцев, и 152 (39%) - спустя 12 месяцев после начала лечения МЛУ-ТБ (рис. 2). На момент ПДН 61% больных (241/395) прекратили бактериовыделение по культуре. Показатель негативации культуры у больных ПДН был существенно ниже у больных ПДН, по сравнению с теми, исход лечения которых был благоприятным (18% против 26%, соответственно).

Более того, причины ПДН могут быть разными. Неблагоприятные побочные явления в ходе лечения МЛУ-ТБ показали, что приблизительно 65% из них возникают в первые 6 месяцев лечения.13 К сожалению, в Грузии отсутствует стандартная система сообщений о связанных с приемом лекарственных средств неблагоприятных явлениях. Единственным источником информации по данной проблеме является проект по профилактике ТБ Американского агентства международного развития в Грузии, в рамках которого больные МЛУ-ТБ, потерянные для дальнейшего наблюдения, разыскивались и опрашивались. Исследование показало, что 50% больных МЛУ-ТБ испытывали на фоне лечения неблагоприятные явления, что и явилось самой важной причиной ПДН.14 Инъекционные препараты и современные ПВР скорее всего, будут использоваться в ближайшие несколько лет, поэтому адекватная система сообщения о и ведения
Таблица 1 Характеристики, связанные с потерей для дальнейшего наблюдения больных с туберкулезом с множественной лекарственной устойчивостью, Грузия, 2009–2011 (n = 1240)

<table>
<thead>
<tr>
<th>Характеристики</th>
<th>Всего (n = 1240)</th>
<th>Потеря для дальнейшего наблюдения (n = 395)</th>
<th>Успех лечения* (n = 845)</th>
<th>P-значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мужской</td>
<td>903 (73)</td>
<td>320 (81)</td>
<td>583 (69)</td>
<td>+0.01</td>
</tr>
<tr>
<td>Женский</td>
<td>337 (27)</td>
<td>75 (18)</td>
<td>262 (31)</td>
<td></td>
</tr>
<tr>
<td>Возраст, лет</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Среднее (СО)</td>
<td>36.2 (14)</td>
<td>37.2 (14)</td>
<td>35.8 (15)</td>
<td></td>
</tr>
<tr>
<td>Семейный статус</td>
<td></td>
<td></td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>В браке/совместное проживание</td>
<td>612 (49)</td>
<td>198 (50)</td>
<td>414 (49)</td>
<td></td>
</tr>
<tr>
<td>Не состоит в брак</td>
<td>628 (51)</td>
<td>197 (50)</td>
<td>431 (51)</td>
<td></td>
</tr>
<tr>
<td>Статус занятости</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Безработный</td>
<td>869 (70)</td>
<td>289 (73)</td>
<td>580 (69)</td>
<td></td>
</tr>
<tr>
<td>Прочее</td>
<td>371 (30)</td>
<td>106 (27)</td>
<td>265 (31)</td>
<td></td>
</tr>
<tr>
<td>Пребывание в местах лишения свободы</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Да</td>
<td>225 (18)</td>
<td>101 (26)</td>
<td>124 (15)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>1015 (82)</td>
<td>294 (74)</td>
<td>721 (85)</td>
<td></td>
</tr>
<tr>
<td>Незаконное потребление наркотиков</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Да</td>
<td>51 (4)</td>
<td>23 (6)</td>
<td>28 (3)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>1065 (86)</td>
<td>319 (81)</td>
<td>746 (88)</td>
<td></td>
</tr>
<tr>
<td>Неизвестно</td>
<td>124 (10)</td>
<td>53 (13)</td>
<td>71 (9)</td>
<td></td>
</tr>
<tr>
<td>Употребление алкоголя</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Да</td>
<td>424 (34)</td>
<td>154 (39)</td>
<td>270 (32)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>780 (63)</td>
<td>230 (58)</td>
<td>550 (65)</td>
<td></td>
</tr>
<tr>
<td>Неизвестно</td>
<td>36 (3)</td>
<td>11 (3)</td>
<td>25 (3)</td>
<td></td>
</tr>
<tr>
<td>Табакокурение</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Да</td>
<td>443 (36)</td>
<td>175 (44)</td>
<td>268 (32)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>797 (64)</td>
<td>220 (56)</td>
<td>577 (68)</td>
<td></td>
</tr>
<tr>
<td>ВИЧ-статус</td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Положительный</td>
<td>36 (3)</td>
<td>14 (4)</td>
<td>22 (3)</td>
<td></td>
</tr>
<tr>
<td>Не положительный/неизвестен</td>
<td>1204 (97)</td>
<td>381 (96)</td>
<td>823 (97)</td>
<td></td>
</tr>
<tr>
<td>Категория больного</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Новый</td>
<td>508 (41)</td>
<td>138 (35)</td>
<td>370 (44)</td>
<td></td>
</tr>
<tr>
<td>Ранее леченный</td>
<td>704 (57)</td>
<td>245 (62)</td>
<td>459 (54)</td>
<td></td>
</tr>
<tr>
<td>Неизвестно</td>
<td>28 (2)</td>
<td>12 (3)</td>
<td>16 (2)</td>
<td></td>
</tr>
<tr>
<td>Локализация ТБ</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Внелегочный</td>
<td>83 (7)</td>
<td>13 (3)</td>
<td>70 (8)</td>
<td></td>
</tr>
<tr>
<td>Легочный</td>
<td>1151 (93)</td>
<td>380 (96)</td>
<td>771 (91)</td>
<td></td>
</tr>
<tr>
<td>Неизвестно</td>
<td>6 (0.5)</td>
<td>2 (1)</td>
<td>4 (1)</td>
<td></td>
</tr>
<tr>
<td>Исходный статус микроскопии мазка</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Отрцательный</td>
<td>395 (32)</td>
<td>97 (25)</td>
<td>298 (35)</td>
<td></td>
</tr>
<tr>
<td>Положительный</td>
<td>769 (62)</td>
<td>277 (70)</td>
<td>492 (58)</td>
<td></td>
</tr>
<tr>
<td>Неизвестно</td>
<td>76 (6)</td>
<td>21 (5)</td>
<td>55 (7)</td>
<td></td>
</tr>
<tr>
<td>Негативация культуры через 2 месяца</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>Да</td>
<td>292 (24)</td>
<td>71 (18)</td>
<td>221 (26)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>948 (76)</td>
<td>324 (82)</td>
<td>624 (74)</td>
<td></td>
</tr>
<tr>
<td>Начало лечения, год</td>
<td></td>
<td></td>
<td></td>
<td>+0.01</td>
</tr>
<tr>
<td>2009</td>
<td>430 (35)</td>
<td>126 (32)</td>
<td>304 (36)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>382 (31)</td>
<td>105 (27)</td>
<td>277 (33)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>428 (34)</td>
<td>164 (41)</td>
<td>264 (31)</td>
<td></td>
</tr>
<tr>
<td>ИМТ, кг/м²</td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>≤18.5</td>
<td>340 (27)</td>
<td>106 (27)</td>
<td>234 (28)</td>
<td></td>
</tr>
<tr>
<td>>18.5</td>
<td>900 (73)</td>
<td>289 (73)</td>
<td>611 (72)</td>
<td></td>
</tr>
<tr>
<td>Область</td>
<td></td>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Тбилиси</td>
<td>591 (48)</td>
<td>200 (51)</td>
<td>391 (46)</td>
<td></td>
</tr>
<tr>
<td>Другой</td>
<td>649 (52)</td>
<td>195 (49)</td>
<td>454 (54)</td>
<td></td>
</tr>
</tbody>
</table>

* Излечен и лечение завершено.
MКД = межквартирный диапазон; СО = стандартное отклонение; ВИЧ = вирус иммунодефицита человека; ИМТ = индекс массы тела.
побочных явлений является важнейшим компонентом лечения МЛУ-ТБ.8,15 Медицинские работники фтизиатрической службы должны непрерывно обучаться выявлению, правильному ведению и коррекции побочных клинических явлений.

Наше исследование выявило ряд индивидуальных характеристик больных, связанных с более высоким риском ПДН. Частота потребления наркотиков, вероятно, была занижена в нашем исследовании, однако была выявлена статистически значимая связь между потреблением наркотиков и ПДН. Одномерный анализ показал связь чрезмерного употребления алкоголя с ПДН; однако определение чрезмерного употребления алкоголя не было стандартизовано и субъективно оценивалось лечащим врачом. Это было основным фактором риска прерывания лечения и несоблюдения режима химиотерапии в исследовании, проведенном в Томской области, Россия.16

Мы рекомендуем проводить регулярный скрининг всех больных МЛУ-ТБ на наличие факторов риска, выявленных в нашем исследовании; при их выявлении больные нуждаются в более пристальном и интенсивном наблюдении. Они нуждаются также в оказании им иной поддержки и помощи, например, в проведении опиоидной заместительной терапии, лечение от алкогольной зависимости и курения. Несмотря на то, что эффективность системы поощрений больных варьируется, доказано, что выплата денежных поощрений эффективнее немонетарных поощрений улучшает приверженность больных лечению и удерживает их на лечении.17 Страна планирует заново за-

РИС. 2 Время до потери для дальнейшего наблюдения больных МЛУ-ТБ, Грузия, 2009–2011. МЛУ-ТБ = туберкулез с множественной лекарственнойустойчивостью.

РИС. 3 Показатели негативации культуры больных с множественно лекарственной устойчивостью, Грузия, 2009–2011 (n = 395).

<table>
<thead>
<tr>
<th>Характеристики</th>
<th>Одномерный анализ</th>
<th>Многомерный анализ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мужской</td>
<td>1.69 (1.31–2.17)</td>
<td>1.37 (1.04–1.79)</td>
</tr>
<tr>
<td>Женский</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Возраст, лет</td>
<td>1.01 (0.99–1.01)</td>
<td></td>
</tr>
<tr>
<td>Семейный статус</td>
<td></td>
<td></td>
</tr>
<tr>
<td>В браке</td>
<td>1.03 (0.84–1.25)</td>
<td></td>
</tr>
<tr>
<td>Не состоит в браке</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Статус занятости</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Безработный</td>
<td>1.17 (0.93–1.46)</td>
<td></td>
</tr>
<tr>
<td>Другой</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Пребывание в местах лишения свободы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>1.67 (1.33–2.09)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Незаконное потребление наркотиков</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>1.69 (1.11–2.58)</td>
<td>1.60 (1.04–2.46)</td>
</tr>
<tr>
<td>Нет</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Незаконно</td>
<td>1.52 (1.13–2.03)</td>
<td>1.38 (1.03–1.86)</td>
</tr>
<tr>
<td>Употребление алкоголя</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>1.25 (1.02–1.53)</td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Незаконно</td>
<td>1.05 (0.57–1.91)</td>
<td></td>
</tr>
<tr>
<td>Табакокурение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>1.52 (1.25–1.85)</td>
<td>1.34 (1.08–1.66)</td>
</tr>
<tr>
<td>Нет</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ВИЧ статус</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Положительный</td>
<td>1.27 (0.74–2.16)</td>
<td></td>
</tr>
<tr>
<td>Не положительный/неизвестно</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категория больного</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Новый</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Ранее леченный</td>
<td>1.34 (1.09–1.65)</td>
<td>1.35 (1.09–1.68)</td>
</tr>
<tr>
<td>Незаконно</td>
<td>1.61 (0.89–2.91)</td>
<td>1.61 (0.86–2.93)</td>
</tr>
<tr>
<td>Локализация ТБ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Внелегочный ТБ</td>
<td>2.19 (1.26–3.80)</td>
<td>2.03 (1.16–3.55)</td>
</tr>
<tr>
<td>Легочный</td>
<td>2.21 (0.50–9.81)</td>
<td>1.93 (0.43–8.75)</td>
</tr>
<tr>
<td>Незаконно</td>
<td>0.70 (0.56–0.89)</td>
<td></td>
</tr>
<tr>
<td>Положительный</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Неизвестно</td>
<td>0.83 (0.53–1.29)</td>
<td></td>
</tr>
<tr>
<td>Негативация культуры через 2 месяца</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Да</td>
<td>0.72 (0.56–0.93)</td>
<td>0.76 (0.59–0.99)</td>
</tr>
<tr>
<td>Нет</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Начало лечения, год</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2010</td>
<td>0.92 (0.69–1.16)</td>
<td>0.92 (0.71–1.20)</td>
</tr>
<tr>
<td>2011</td>
<td>1.36 (1.07–1.71)</td>
<td>1.46 (1.14–1.85)</td>
</tr>
<tr>
<td>ИМТ, кг/м²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤18.5</td>
<td>0.97 (0.78–1.21)</td>
<td></td>
</tr>
<tr>
<td>>18.5</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Область</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тбилиси</td>
<td>1.19 (0.98–1.45)</td>
<td>1.30 (1.07–1.59)</td>
</tr>
<tr>
<td>Другая</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Скорректированные ОР представлены только для переменных, включенных в многомерную модель. ОР = отношение риска; ДИ = доверительный интервал; сОР = скорректированное ОР; ВИЧ = вирус иммунодефицита человека; ИМТ = индекс массы тела.
пустить комплексный пакет мер, направленных на улучшение при-
верхности лечения (с помощью денежных поощрений) в 2014г.
Двумя обусловленными лечением факторами, связанными с ПДН, были год и место начала лечения. Во многих исследованиях было установлено, что более поздний год начала лечения был связан с бо-
ле высокими показателями ПДН, считается, что это является реzuль-татом увеличения размера когорты больных МЛУ-ТБ и, как следствие, невозможности предоставления индивидуализированной, ориенти-
рованной на пациента помощи.6.18 Уменьшается соотношение числа медиработников-больных, и ограниченные финансовые ресурсы НПТ распределяются между все большим числом пациентов. В Грузии об-
ще число больных МЛУ-ТБ, нахождящихся на лечении, непрерывно увеличивалось с 2009г. по 2011г., что может быть причиной более вы-
соких показателей ПДН. Больница НЦТБЛ и дочерние клиники в Тбили-
сии оказывают медицинскую помощь большинству больных МЛУ-ТБ в стране, что по указанным выше причинам могло привести к более высокой частоте ПДН, чем в других областях, где имеется возмож-
ность оказания пациент-orientированной, децентрализованной помощи. Дополнительным фактором, вероятно связанным с более высоким числом ПДН в 2011г, является появлявшаяся недавно тенден-
ция к у больных из стран бывших республик СССР обращаться за меди-
цинской помощью в других странах. В отчете 2013г. говорится о боль-
шом числе больных МЛУ-ТБ из Грузии, обращающихся за медицинской помощью во Франции, включая 26 больных в 2012г.19 Это говорит об экстренной необходимости оценки отношения боль-
ных к качеству медицинской помощи в Грузии и поиска способов со-
вершенствования лечения МЛУ-ТБ.
Основными преимуществами нашего исследования были: боль-
шая когорта, вошедшая в исследование, включение статуса негати-
визации культуры на момент ПДН и соблюдение рекомендация STROBE (Укрепление отчетности о наблюдательных исследованиях в эпиде-
миологии) по отчетности о наблюдательных исследованиях.20 Огра-
ничения включают в себя наличие не показанных в использо-
ванных ретроспективных, стандартизированных программных данных, отсутствие информации о неблагоприятных побочных явле-
ниях и сочетанных патологиях, включая диабет и психические рас-
стройства, систематического учета которых не ведется. Отсутствие дат госпитализации также не позволяло нам оценить эффект дли-
тельности госпитализации на ПДН. В качестве заключения отметим, что наше исследование показало настораживающий высокий показатель ПДН у больных МЛУ-ТБ и высок-
кий показатель бактериовыделения по посеву на момент ПДН. Поте-
рянные для дальнейшего наблюдения больные представляют угрозу рас пространения МЛУ-ТБ в сообществе, результаты нашего исследо-
вания показали, что для решения данной проблемы необходим ком-
плексный подход.
С учетом национального контекста можно предложить следующие рекомендации:
• совершенствование коррекции неблагоприятных побочных явле-
ний за счет создания системы фармакондзора, подключенной к электронной базе данных по ТБ;
• обучение медработников лечению побочных эффектов противоту-
беркулезных препаратов;
• проведение скрининга наличия у больных факторов риска, выяв-
ленных в ходе данного исследования, и интенсивное контрольное наблюде-
ние;
• использование системы поощрений и оказание дополнительной помощи больным;
• децентрализация лечебных учреждений в Тбилисе, с целью улуч-
шения соотношения числа врачей и пациентов на лечебный центр.

Список литературы