Causes and Timing of Death in Extremely Premature Infants from 2000 through 2011

Ravi Patel, Emory University
Sarah Kandefer, RTI International
Michele C. Walsh, Case Western Reserve University
Edward F. Bell, University of Iowa
Waldemar A. Carlo, University of Alabama at Birmingham
Abbot R. Laptook, Women and Infants Hospital
Pablo J. Sánchez, Ohio State University
Seetha Shankaran, Wayne State University
Krisa P. Van Meurs, Stanford University
M. Bethany Ball, Stanford University

Only first 10 authors above; see publication for full author list.

Journal Title: New England Journal of Medicine
Volume: Volume 372, Number 4
Publisher: Massachusetts Medical Society | 2015-01-22, Pages 331-340
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1056/NEJMoa1403489
Permanent URL: https://pid.emory.edu/ark:/25593/psh1z

Final published version: http://dx.doi.org/10.1056/NEJMoa1403489

Copyright information:
© 2015, Massachusetts Medical Society
Accessed January 2, 2019 4:03 PM EST
ABSTRACT

Understanding the causes and timing of death in extremely premature infants may guide research efforts and inform the counseling of families.

METHODS

We analyzed prospectively collected data on 6075 deaths among 22,248 live births, with gestational ages of 22 0/7 to 28 6/7 weeks, among infants born in study hospitals within the National Institute of Child Health and Human Development Neonatal Research Network. We compared overall and cause-specific in-hospital mortality across three periods from 2000 through 2011, with adjustment for baseline differences.

RESULTS

The number of deaths per 1000 live births was 275 (95% confidence interval [CI], 264 to 285) from 2000 through 2003 and 285 (95% CI, 275 to 295) from 2004 through 2007; the number decreased to 258 (95% CI, 248 to 268) in the 2008–2011 period (P=0.003 for the comparison across three periods). There were fewer pulmonary-related deaths attributed to the respiratory distress syndrome and bronchopulmonary dysplasia in 2008–2011 than in 2000–2003 and 2004–2007 (68 [95% CI, 63 to 74] vs. 83 [95% CI, 77 to 90] and 84 [95% CI, 78 to 90] per 1000 live births, respectively; P=0.002). Similarly, in 2008–2011, as compared with 2000–2003, there were decreases in deaths attributed to immaturity (P=0.05) and deaths complicated by infection (P=0.04) or central nervous system injury (P<0.001); however, there were increases in deaths attributed to necrotizing enterocolitis (30 [95% CI, 27 to 34] vs. 23 [95% CI, 20 to 27], P=0.03). Overall, 40.4% of deaths occurred within 12 hours after birth, and 17.3% occurred after 28 days.

CONCLUSIONS

We found that from 2000 through 2011, overall mortality declined among extremely premature infants. Deaths related to pulmonary causes, immaturity, infection, and central nervous system injury decreased, while necrotizing enterocolitis–related deaths increased. (Funded by the National Institutes of Health.)
ALTHOUGH SURVIVAL AMONG PREMATURE INFANTS has improved, prematurity is a leading contributor to neonatal mortality in the United States. Approximately one in four extremely premature infants born at 22 to 28 weeks of gestation does not survive the birth hospitalization; mortality rates decrease with each additional week of completed gestation. Historically, most extremely premature infants died within a few days after birth. Among extremely-low-birth-weight infants born at centers in the National Institute of Child Health and Human Development (NICHD) Neonatal Research Network between 1993 and 1997, immaturity was the leading cause of death within 12 hours after birth, and pulmonary conditions predominated as the cause of death for those surviving for more than 12 hours. Changes in neonatal care since this period, including changes in prenatal use of glucocorticoids and antibiotic agents, use of surfactants, and ventilation strategies, may have led to a relative decrease in deaths attributable to pulmonary causes with a concomitant increase in nonpulmonary causes of death. However, data from a large contemporary cohort of premature infants have not been available to address this question.

We performed the present study to evaluate the causes and timing of death among extremely premature infants in the United States and to assess temporal changes in overall mortality and the causes and timing of death during three periods from 2000 through 2011. We hypothesized that the frequency of pulmonary causes of death, including the respiratory distress syndrome and bronchopulmonary dysplasia, had decreased among extremely premature infants from 2000 through 2011, while the frequency of nonpulmonary causes of death had increased.

METHODS

STUDY POPULATION AND DEFINITIONS

Liveborn infants enrolled in the Generic Database registry of the NICHD Neonatal Research Network were eligible for inclusion in the study if they met the following three criteria: they were born between January 1, 2000, and December 31, 2011, their gestational age at birth was 22 0/7 to 28 6/7 weeks, and they were born in a Neonatal Research Network center. The inclusion criteria were chosen to ensure a consistent selection of infants throughout the study period, because the registry selection criteria were revised in 2008 to exclude infants not born in Neonatal Research Network centers and those with a gestational age at birth of 29 weeks or older. The registry was reviewed and approved by the institutional review board at each participating center. In 3 centers, written or oral informed consent was obtained from the parent or guardian, and in the other 22 centers, a waiver of the requirement for consent was approved by the institutional review board.

Data were collected prospectively by trained research coordinators for all liveborn infants, including those never admitted to an intensive care unit. Gestational age was determined with the use of the best obstetrical estimate based on the date of the last menstrual period, obstetrical variables, prenatal ultrasonography, or all three. If the best obstetrical estimate was unavailable or uncertain, gestational age was determined on the basis of the neonatologist’s estimate with the use of physical examination criteria, including the Ballard or Dubowitz examination. Enrolled infants were actively followed from birth to a postnatal age of 120 days, death, hospital discharge, or transfer to another center (whichever occurred first); infants who remained hospitalized for more than 120 days were evaluated for death until 1 year of age. The primary cause of death was prospectively identified and defined as the single underlying, proximate disease that initiated the series of events leading to the final cause of death. The definitions of the specific causes of death are listed in Table S1 in the Supplementary Appendix (available with the full text of this article at NEJM.org) and were included in the manual of operations for the registry. The primary cause of death had to be causally specific to the underlying disease and antecedent to all other causes with respect to time and pathologic relationship. Primary causes of death with infection or central nervous system (CNS) injury as complicating factors were identified from prespecified subcauses. If autopsy findings were available, the cause of death was based on both clinical and autopsy findings. In situations in which the cause of death was not certain, the single cause of death was selected after consultation with the principal investigator (or appointee) from each center. However, interobserver reliability was not assessed. Causes of death that could not be classified as one of the prespecified
causes were classified as “other.” Causes that were investigated but could not be established were classified as “unknown.”

STATISTICAL ANALYSIS

We compared the overall and cause-specific mortality rate (number of deaths per 1000 live births) and the proportionate mortality (relative percentage contribution) for the coded causes of death among infants born in three birth-year periods: 2000–2003, 2004–2007, and 2008–2011. We selected comparisons among three birth-year periods instead of individual birth years to provide a sufficiently large sample to control for confounding in our analysis and to provide mortality estimates with greater precision. We compared maternal and neonatal characteristics among the three periods using the Mantel–Haenszel chi-square test for categorical variables and the Kruskal–Wallis test for continuous variables. We performed post hoc subgroup analyses to evaluate potential differences in overall and immaturity-related mortality due to the addition and attrition of centers over time, and we performed sensitivity analyses to evaluate the effects of potential misclassification of deaths due to immaturity, the respiratory distress syndrome, or bronchopulmonary dysplasia (see the Methods section in the Supplementary Appendix). Additional analyses examined causes of death that were complicated by either CNS injury or infection for which another primary cause was listed.

We used the Wald chi-square test in a logistic regression to test the null hypothesis that there was no difference in mortality among the three birth-year periods, after adjusting for potential confounding according to center and important known baseline predictors of death. These variables included gestational age, birth weight, sex, race or ethnic background, multiple gestation (yes vs. no), and small body mass for gestational age (yes vs. no). If the overall difference was significant, we performed pairwise birth-period–specific comparisons between 2008–2011 and the two earlier periods. Variables related to clinical therapy, such as prenatal glucocorticoid use or respiratory care, that may have accounted for the changes in mortality over time and were thought to be part of the causal pathway between improvements in care over time and decreases in mortality were not included as covariates in the regression model. To provide protection against model overfitting, the number of parameters in the model for comparison of cause-specific mortality due to CNS injury was reduced because of the small number of events. To avoid an increased type 1 error rate from multiple testing, we provide only descriptive estimates for proportionate mortality; we did not adjust for multiple comparisons of cause-specific mortality. We compared the time to death among the three periods with the Kaplan–Meier method and used the Wilcoxon test, because this test applies more weight to early deaths than does the log-rank test. We considered a two-sided P value of less than 0.05 to indicate statistical significance.

RESULTS

CHARACTERISTICS OF THE STUDY POPULATION

From January 1, 2000, to December 31, 2011, a total of 22,248 extremely premature infants (22 0/7 to 28 6/7 weeks of gestation) were born alive at one of the 25 study centers and met criteria for inclusion in the study. Among these infants, 6075 (27.3%) died during the birth hospitalization; 6045 (99.5%) of the infants who died had a coded cause of death listed in the registry. Gestational age, birth weight, and sex were similar across the three birth-year periods for both live births and deaths (Table 1). Extremely premature infants who died were 2 weeks younger in gestational age than surviving infants (mean gestational age at birth, 24.3 vs. 26.3 weeks; P<0.001). In addition, the frequency of receipt of prenatal glucocorticoids was lower among mothers whose infants died than among those whose infants survived (62.0% vs. 87.6%, P<0.01).

From 2000 through 2011, we detected increases in the percentages of women who received any prenatal care, who received prenatal glucocorticoids, and who delivered by cesarean section, as well as decreases in the percentage of women who received prenatal antibiotic treatment (P<0.001 for each comparison among live births across all three periods) (Table 1, and Table S2 in the Supplementary Appendix). The increase in prenatal glucocorticoid administration over the three periods was seen for infants across all gestational ages, including those born at 22 to 23 weeks of gestation. Changes in neonatal characteristics among liveborn infants from 2000–2003 to 2008–2011 included a decrease in the frequency of a temperature below 36°C at
Table 1. Characteristics of the Cohort.*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Live Births (N = 2043)</th>
<th>Deaths (N = 2193)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age — wk</td>
<td>25.7±1.8</td>
<td>25.7±1.8</td>
</tr>
<tr>
<td>Birth weight — g†</td>
<td>837±241</td>
<td>834±240</td>
</tr>
<tr>
<td>Female sex — no./total no. (%)</td>
<td>3506/7440 (47.1)</td>
<td>3638/7682 (47.4)</td>
</tr>
<tr>
<td>Multiple gestation — no. (%)</td>
<td>1826 (24.5)</td>
<td>1923 (25.0)</td>
</tr>
<tr>
<td>Maternal race — no./total no. (%)†‡§¶</td>
<td>3139/7433 (42.2)</td>
<td>3054/7603 (40.2)</td>
</tr>
<tr>
<td>Black</td>
<td>3997/7433 (53.8)</td>
<td>4194/7603 (55.2)</td>
</tr>
<tr>
<td>Other</td>
<td>297/7433 (4.0)</td>
<td>355/7603 (4.7)</td>
</tr>
<tr>
<td>Mother received prenatal glucocorticoids — no./total no. (%)‡‖</td>
<td>5882/7432 (79.1)</td>
<td>6071/7658 (79.3)</td>
</tr>
<tr>
<td>Intubated in delivery room — no./total no. (%)‡††</td>
<td>5198/7433 (69.9)</td>
<td>5048/7679 (65.7)</td>
</tr>
<tr>
<td>Temperature at admission <36.0°C — no./total no. (%)‡§¶¶</td>
<td>1691/3439 (49.2)</td>
<td>2870/6765 (42.4)</td>
</tr>
<tr>
<td>Received comfort care in delivery room — no./total no. (%)‡‡</td>
<td>527/7433 (7.1)</td>
<td>571/7679 (7.4)</td>
</tr>
<tr>
<td>S-min Apgar score — median (IQR)‡§§</td>
<td>7 (5–8)</td>
<td>7 (5–8)</td>
</tr>
<tr>
<td>Underwent surfactant therapy — no./total no. (%)‡§¶¶</td>
<td>5337/7413 (74.7)</td>
<td>5751/7679 (74.9)</td>
</tr>
<tr>
<td>Underwent high-frequency ventilation for ≥1 day — no./total no. (%)‡§</td>
<td>2104/7439 (28.3)</td>
<td>2593/7421 (34.9)</td>
</tr>
</tbody>
</table>

* Plus–minus values are means ±SD. IQR denotes interquartile range.
† Data for birth weight were missing for 3 live births in the 2008–2011 period; all 3 of the infants died.
‡ P<0.001 by the Mantel–Haenszel chi-square test (categorical variables) or the Kruskal–Wallis test (continuous variables) for the comparison of live births among the three periods.
§ P<0.001 for the comparison of deaths among the three periods.
¶ Maternal race and ethnic background were self-selected by the mother from options defined by federally funded study guidelines. The category “other” included American Indian, Alaskan Native, Asian, Pacific Islander (including Native Hawaiian), more than one race, and other or not specified.
‖ P = 0.003 for the comparison of live births among the three periods.
** P = 0.02 for the comparison of deaths among the three periods.
†† Comfort care in the delivery room was defined as no endotracheal intubation and death within 12 hours after birth.
¶¶ Data for temperature at admission were not collected in 2000 or 2001.
admission (from 49.2% to 24.4%, \(P<0.001\)), a factor that has previously been associated with increased neonatal mortality,\(^{13}\) and an increase in the rate of use of high-frequency ventilation (from 28.3% to 38.5%, \(P<0.001\)); the rate doubled from 2000–2003 to 2008–2011 for infants born at 22 to 23 weeks of gestation, from 29.3% to 62.4% (Table S2 in the Supplementary Appendix). There was no significant change in the frequency of the use of surfactant therapy from 2000–2003 to 2008–2011 (74.7% to 75.0%, \(P=0.63\)).

TRENDS IN OVERALL MORTALITY

The overall in-hospital mortality rate did not change significantly from 2000–2003 to 2004–2007, but it decreased by 9.6%, from 285 to 258 deaths per 1000 live births, from 2004–2007 to 2008–2011 (adjusted \(P=0.003\) for the comparison across the three periods) (Table 2). There was a high risk of early death across all three periods, with differences in Kaplan–Meier estimates of survival across the three periods becoming more apparent during the first several postnatal weeks (Fig. S1 and S2 in the Supplementary Appendix). In contrast, the age at death was unchanged over the three periods, occurring at a median of 3 days. Neonatal deaths in the 2000–2011 period were evenly distributed between early deaths (within the first 12 hours of life) and those occurring between 12 hours and 28 days of age (Table 2).

In post hoc subgroup analyses, we did not detect significant heterogeneity in the change in overall mortality among the three periods between centers with continuous participation in the Neonatal Research Network and centers with noncontinuous participation (Table S3 in the Supplementary Appendix). Overall, continuous participating centers provided comfort care more frequently in the delivery room (\(P<0.001\)) and had higher overall mortality (\(P<0.001\)) than did noncontinuous participating centers.

TRENDS IN CAUSE-SPECIFIC MORTALITY

Between 2000 and 2011, deaths were most frequently attributed to immaturity (83 deaths per 1000 live births), the respiratory distress syndrome (64 deaths per 1000 live births), and infection (54 deaths per 1000 live births, attributed to or complicated by infection) (Table 2). Overall, the number of deaths per 1000 live births attributed to the respiratory distress syndrome and bronchopulmonary dysplasia was materially unchanged from 2000–2003 to 2004–2007 (83 and 84 deaths per 1000 live births, respectively) but showed a subsequent decrease in 2008–2011, to 68 deaths per 1000 live births (adjusted \(P=0.002\) for the comparison across the three periods). The decrease in deaths attributed to pulmonary causes accounted for 53% of the overall reduction in mortality from 2000–2003 to 2008–2011. In contrast, increases in deaths attributed to necrotizing enterocolitis offset the overall reduction in mortality by 26%. In addition, changes over time in the frequencies of deaths attributed to immaturity were not significant in a sensitivity analysis limited to infants born before 24 weeks of gestation (Table S4 in the Supplementary Appendix). Only 3% of deaths coded as “other” had a specification of the cause of death. We reviewed the records of these patients and found that the frequency of coexisting conditions in infants with deaths coded as “other” was similar to that among infants with a specific coded cause of death. We identified some potential misclassification between deaths due to the respiratory distress syndrome and deaths due to bronchopulmonary dysplasia within the first 28 postnatal days or to the respiratory distress syndrome after 28 postnatal days; however, the overall results of a sensitivity analysis to account for this misclassification were consistent with those of the primary analysis (Table S4 in the Supplementary Appendix). In addition, the percentage of deaths attributed to infection increased substantially from the first postnatal week (3.5% of all deaths) to the second postnatal week (15.3% of all deaths).
Cause and Timing of Death According to Gestational Age

Immaturity was most commonly identified as the cause of death for infants born at 22 or 23 weeks of gestation; most of these infants died within 12 hours after birth and were not intubated in the delivery room (Table 3, and Table S7 in the Supplementary Appendix). In contrast, deaths...
among infants born at 24 to 27 weeks of gestation were primarily attributed to the respiratory distress syndrome; the majority of deaths among these infants occurred from 12 hours to 28 days of age, but more than 20% of deaths occurred after 28 days of age (Table 4). As gestational age increased, the percentage of deaths attributed to necrotizing enterocolitis and congenital anomalies also increased. The largest absolute declines in mortality from 2000–2003 to 2008–2011 were observed for infants born at 23 or 24 weeks of gestation (Table 4).

Discussion

This study shows a reduction in death rates among extremely premature infants born at NICHD Neonatal Research Network centers between 2000 and 2011. The decline in overall mortality was greatest between 2004–2007 and 2008–2011, a period during which the relative decrease in the overall mortality rate was 9.6%. More than half the decrease in overall mortality was accounted for by a reduction in deaths attributed to the respiratory distress syndrome and bronchopulmonary dysplasia. In contrast, deaths attributed to necrotizing enterocolitis increased significantly from 2000–2003 to 2008–2011. The trends we observed in deaths attributed to pulmonary causes or necrotizing enterocolitis are consistent with trends from 1988 through 2008 in infants born before 31 weeks of gestation, as reported in the U.K. Perinatal Mortality Survey.14 However, we found a decrease in deaths attributed to or complicated by infection, whereas increases in infection-related deaths were reported in the U.K. Perinatal Mortality Survey. The increase in mortality attributed to necrotizing enterocolitis may be related to improvements in the early survival of infants who would have otherwise died before they reached the typical postnatal age at which necrotizing enterocolitis occurs. Data from the U.K. Perinatal Mortality Survey and a Swedish cohort15 are consistent with these observations.

Improved overall survival of premature infants has recently been reported by researchers from the Vermont Oxford Network,16 the Canadian Neonatal Network,17 and Japan,18 although these studies did not evaluate changes in cause-specific mortality associated with reductions in overall mortality. The observed decline in overall
mortality in our study is unlikely to be a result of more aggressive resuscitation in the delivery room for infants at the margins of viability, because the frequency of aggressive resuscitation in the delivery room, including endotracheal intubation for infants born before 24 weeks of gestation, was similar across the three periods. However, increases in the use of high-frequency ventilation may reflect more aggressive respiratory care over time for the most immature infants in the neonatal intensive care unit.

The limitations of our study should be acknowledged. Determining a single cause of death when multiple causes may play a role can be difficult and subjective. We used prospective evaluation with standardized definitions and inclusion of autopsy findings, when available, in an effort to minimize bias in determining the primary cause of death, but the validity of such determinations is uncertain. Misclassification may have occurred, particularly in attributing causes of death to immaturity versus the respiratory distress syndrome or bronchopulmonary dysplasia. To address this, we evaluated the sensitivity of our findings to potential misclassification of these causes and also characterized "pulmonary" deaths attributed to either the respiratory distress syndrome or bronchopulmonary dysplasia. We also combined deaths that were coded as either directly attributed to or complicated by infection or CNS injury, because the distinction between causation and co-occurrence is often unclear.
Table 4. Overall Mortality and Timing of Death According to Gestational Age.

<table>
<thead>
<tr>
<th>Variable</th>
<th>22 Wk</th>
<th>23 Wk</th>
<th>24 Wk</th>
<th>25 Wk</th>
<th>26 Wk</th>
<th>27 Wk</th>
<th>28 Wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality rate per 1000 live births (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All years</td>
<td>949 (933–961)</td>
<td>730 (711–749)</td>
<td>427 (410–445)</td>
<td>258 (244–273)</td>
<td>157 (146–169)</td>
<td>115 (106–125)</td>
<td>78 (70–86)</td>
</tr>
<tr>
<td>Time of death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of infants*</td>
<td>931</td>
<td>1483</td>
<td>1338</td>
<td>887</td>
<td>581</td>
<td>492</td>
<td>361</td>
</tr>
<tr>
<td>Birth to 12 hr — no. (%)</td>
<td>834 (89.6)</td>
<td>833 (56.2)</td>
<td>352 (26.3)</td>
<td>158 (17.8)</td>
<td>110 (18.9)</td>
<td>82 (16.7)</td>
<td>84 (23.3)</td>
</tr>
<tr>
<td>>12 hr to 28 days — no. (%)</td>
<td>84 (9.0)</td>
<td>539 (36.3)</td>
<td>709 (53.0)</td>
<td>489 (55.1)</td>
<td>310 (53.4)</td>
<td>259 (52.6)</td>
<td>180 (49.9)</td>
</tr>
<tr>
<td>>12 hr to 72 hr — no. (%)</td>
<td>36 (3.9)</td>
<td>225 (15.2)</td>
<td>243 (18.2)</td>
<td>149 (16.8)</td>
<td>93 (16.0)</td>
<td>61 (12.4)</td>
<td>47 (13.0)</td>
</tr>
<tr>
<td>>72 hr to 7 days — no. (%)</td>
<td>17 (1.8)</td>
<td>83 (5.6)</td>
<td>111 (8.3)</td>
<td>92 (10.4)</td>
<td>49 (8.4)</td>
<td>44 (8.9)</td>
<td>21 (5.8)</td>
</tr>
<tr>
<td>8 to 14 days — no. (%)</td>
<td>20 (2.1)</td>
<td>114 (7.7)</td>
<td>163 (12.2)</td>
<td>106 (12.0)</td>
<td>79 (13.6)</td>
<td>80 (16.3)</td>
<td>41 (11.4)</td>
</tr>
<tr>
<td>15 to 28 days — no. (%)</td>
<td>11 (1.2)</td>
<td>117 (7.9)</td>
<td>192 (14.3)</td>
<td>142 (16.0)</td>
<td>89 (15.3)</td>
<td>74 (15.0)</td>
<td>71 (19.7)</td>
</tr>
<tr>
<td>>28 days — no. (%)</td>
<td>13 (1.4)</td>
<td>111 (7.5)</td>
<td>277 (20.7)</td>
<td>240 (27.1)</td>
<td>161 (27.7)</td>
<td>151 (30.7)</td>
<td>97 (26.9)</td>
</tr>
<tr>
<td>29 to 60 days — no. (%)</td>
<td>6 (0.6)</td>
<td>54 (3.6)</td>
<td>138 (10.3)</td>
<td>121 (13.6)</td>
<td>74 (12.7)</td>
<td>73 (14.8)</td>
<td>43 (11.9)</td>
</tr>
<tr>
<td>61 to 90 days — no. (%)</td>
<td>4 (0.4)</td>
<td>20 (1.3)</td>
<td>52 (3.9)</td>
<td>40 (4.5)</td>
<td>22 (3.8)</td>
<td>27 (5.5)</td>
<td>19 (5.3)</td>
</tr>
<tr>
<td>91 to 120 days — no. (%)</td>
<td>1 (0.1)</td>
<td>8 (0.5)</td>
<td>19 (1.4)</td>
<td>21 (2.4)</td>
<td>21 (3.6)</td>
<td>12 (2.4)</td>
<td>10 (2.8)</td>
</tr>
<tr>
<td>>120 days — no. (%)</td>
<td>2 (0.2)</td>
<td>29 (2.0)</td>
<td>68 (5.1)</td>
<td>58 (6.5)</td>
<td>44 (7.6)</td>
<td>39 (7.9)</td>
<td>25 (6.9)</td>
</tr>
</tbody>
</table>

* Information on time of death was missing for two infants.
We could not identify a cause of death for the 13.7% of infants whose cause of death was classified as “other,” despite attempts to further characterize this group of infants. Also, we could not determine the frequency of withdrawal or limitation of intensive care and its effect on changes in mortality. In addition, we did not adjust for multiple comparisons of cause-specific mortality, which increased the likelihood that some significant differences in cause-specific mortality over time may have been the result of chance. Finally, Neonatal Research Network centers may not be representative of other tertiary, large neonatal intensive care units, and this may limit the generalizability of our findings.

In conclusion, from 2000 through 2011, rates of death overall — and specifically, deaths attributed to immaturity or pulmonary causes (bronchopulmonary dysplasia and the respiratory distress syndrome) and those attributed to or complicated by infection or CNS injury — decreased among extremely premature infants, while deaths attributed to necrotizing enterocolitis increased. Our findings underscore the continued need to develop and implement strategies for reducing the potentially lethal complications of premature birth.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institutes of Health or the Department of Health and Human Services.

Supported by grants from the National Institutes of Health (NIH), grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, for the Neonatal Research Network Generic Database Study (U10 awards HD27904, HD21364, HD68284, HD27853, HD40492, HD27851, HD27856, HD68278, HD36790, HD27880, HD53119, HD34216, HD68270, HD40461, HD53109, HD21937, HD27881, HD53089, HD68244, HD68263, HD40521, HD21415, HD40689, HD221373, HD53124, HD40496, HD21385, and HD27871), and grants from the National Center for Advancing Translational Sciences, NIH (UL1TR000454 and KL2TR000455, to Dr. Patel).

No potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank our medical and nursing colleagues and the infants and their parents who participated in this study. Additional acknowledgments, including investigators and sites, are listed in the Supplementary Appendix, available at NEJM.org.

REFERENCES

Copyright © 2015 Massachusetts Medical Society.