Carotenoids and non-alcoholic fatty liver disease

Bahiddin Yilmaz, Emory University
Kazim Sahin, Emory University
Hande Bilen, Emory University
Ibrahim H. Bahcecioglu, Emory University
Birdal Bilir, Emory University
Karim Halazun, Emory University
Omer Kucuk, Emory University

Journal Title: Hepatobiliary Surgery and Nutrition
Volume: Volume 4, Number 3
Publisher: AME Publishing Company | 2015-06, Pages 161-171
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.3978/j.issn.2304-3881.2015.01.11
Permanent URL: https://pid.emory.edu/ark:/25593/pr20d

Final published version: http://dx.doi.org/10.3978/j.issn.2304-3881.2015.01.11

Copyright information:
© 2015 Hepatobiliary Surgery and Nutrition.

Accessed December 29, 2017 2:07 AM EST
Carotenoids and non-alcoholic fatty liver disease

Bahiddin Yilmaz¹, Kazim Sahin², Hande Bilen¹, Ibrahim H. Bahcecioglu³, Birdal Bilir¹, Sara Ashraf⁴, Karim J. Halazun⁴, Omer Kucuk¹

¹Winship Cancer Institute, Emory University, Atlanta, GA, USA; ²Division of Animal Nutrition, Faculty of Veterinary Medicine, ³Division of Gastroenterology, School of Medicine, Firat University, Elazig, Turkey; ⁴Department of Surgery, Emory University, Atlanta, GA, USA

Correspondence to: Omer Kucuk, MD. Winship Cancer Institute of Emory University, 1365 Clifton Road, Building B, Suite 4300, Atlanta, GA 30322, USA. Email: okucuk@emory.edu.

Abstract: Non-alcoholic fatty liver disease (NAFLD) is a growing health problem around the world, especially in developed countries. NAFLD includes all cases of fatty liver disease from simple steatosis to cirrhosis, without excessive alcohol intake, use of steatogenic medication or hereditary disorders. Pathogenesis is associated with dietary high fat intake, decreased free fatty acid (FFA) oxidation, increased hepatic lipogenesis and lipolysis from the adipose tissue. These metabolic alterations contribute to the hepatic fat accumulation. Consequently, stimulated oxidative stress and inflammation play a major role in hepatocellular damage. Therefore, antioxidant and anti-inflammatory agents may have a role in the prevention of this disease. Carotenoids are potent antioxidant and anti-inflammatory micronutrients, which have been investigated in the prevention and treatment of NAFLD. The main sources of the carotenoids are fruits and vegetables. In this article we review the potential role and possible molecular mechanism of carotenoids in NAFLD.

Keywords: Fatty liver; steatosis; non-alcoholic steatohepatitis; carotenoid; oxidative stress; antioxidant

Submitted Dec 01, 2014. Accepted for publication Jan 08, 2015.

doi: 10.3978/j.issn.2304-3881.2015.01.11

View this article at: http://dx.doi.org/10.3978/j.issn.2304-3881.2015.01.11

Introduction

The results of recent investigations suggest that dietary interventions may modulate the expression of some genes that may affect many chronic diseases such as cancer, cardiovascular disease, diabetes, hypertension and neurodegenerative diseases. Carotenoids are among the most investigated dietary micronutrients in this regard.

Carotenoids are fat-soluble pigments that give the yellow, red and orange color to fruits and vegetables. Although at least 600 carotenoids were defined in the nature, approximately forty of these are consumed in the human diet. Furthermore, fourteen of these carotenoids and some of their metabolites are identified in blood and tissues (1,2). They can only be synthesized by plants and microorganisms, therefore their sources are mostly from fruits and vegetables. β-carotene, lycopene, α-carotene, β-cryptoxanthin, lutein and zeaxanthin are among the most studied carotenoids (3-5). Carotenoids can be separated into provitamin A carotenoids (e.g., β-carotene α-carotene and β-cryptoxanthin) and non-provitamin A carotenoids (lycopene, lutein and zeaxanthin). These compounds play an important role in human physiology due to their remarkable biological activities such as their effects on oxidative stress and inflammation (3). Carotenoids can act as potent antioxidants and protect the cells against oxidative damage induced by reactive oxygen species (ROS) (4).

Nonalcoholic fatty liver disease (NAFLD) is the broad spectrum of diseases from simple hepatic steatosis to cirrhosis, without excessive alcohol intake and use of steatogenic medication or hereditary disorders. Hepatic steatosis must be proven by imaging or histopathology. According to the NAFLD diagnosis and management guidelines of the American Association for the Study of Liver Diseases (AASLD), nonalcoholic fatty liver (NAFL) is defined as the presence of hepatic steatosis without ballooning degeneration and inflammation in the hepatocytes. Non-alcoholic steatohepatitis (NASH) is
defined as the presence of diffuse fatty infiltration in the liver and characterized by ballooning hepatocyte injury and inflammation in the hepatocytes with or without fibrosis (6-8). NAFL is mostly benign and risk of progression to cirrhosis and liver failure is minimal, whereas NASH can lead to cirrhosis, liver failure and hepatocellular carcinoma (HCC) (8,9).

There are limited and inconsistent data regarding the incidence rate of NAFLD. Inconsistency is related to different age, ethnic groups, and geographic groups (8). Although a study from England has shown an incidence of 29 cases per 100,000 person-years (10), Japanese researchers have reported rates of 31 and 86 suspected cases per 1,000 person-years in two different studies (11,12). NAFLD has become the most common cause of chronic liver disease with increasing prevalence and is reported to affect up to 20-40% of the general adult population worldwide (13). Increased prevalence of the disease has nearly doubled from 1988 to 2008 in the US and it is responsible for over 75% of the chronic liver diseases (14,15). The primary reason of the increased rate in the US population is obesity. Together with obesity, it is commonly associated with diabetes mellitus type 2, metabolic syndrome and hyperlipidemia (7,14).

In this paper, we review the underlying mechanisms of NAFLD pathogenesis, including oxidative stress and inflammation, and discuss the potential preventive and therapeutic effects of carotenoids in NAFLD.

NAFLD pathogenesis

The pathogenesis of NAFLD is a complicated process and is not fully understood. Assessment of the hepatic molecular changes, metabolic signaling networks and other pathogenetic factors could be helpful in understanding the process and developing appropriate preventive or therapeutic interventions. In 1998, a model was proposed to describe the pathogenetic process from simple steatosis NAFL to NASH. According to this widely adopted “two hits” pathophysiological model, first hit refers to hepatic fat accumulation and subsequently the second hit is the increased oxidative stress and initiation of lipid peroxidation. Recently, this model gave place to “multiple parallel hits” hypothesis, which has been suggested by Tilg and Moschen, and involved obesity, insulin resistance, oxidative stress, and proinflammatory processes (16).

Obesity is defined as excessive fat accumulation in adipose tissue and especially visceral adipose tissue, which is more important than subcutaneous adipose tissue in terms of NAFLD. Visceral obesity is associated with hepatic steatosis, hepatic inflammation and fibrosis (6,17,18). It has also been associated with increased insulin resistance, metabolic syndrome, lipogenesis, and lipolysis (19,20).

Hepatic fat accumulation, i.e., steatosis, is primarily associated with increased intake of dietary fat and/or increased free fatty acids (FFA) due to increased lipolysis from adipose tissue. Furthermore decreased FFA oxidation, decreased hepatic very-low-density lipoprotein (VLDL), triglyceride secretion and increased hepatic lipogenesis contribute to the steatosis (16,21). FFAs are responsible for approximately two-thirds of accumulated lipid in liver (22).

Insulin resistance has been related to metabolic syndrome and type 2 diabetes (23). Hepatic insulin resistance is characterized by hyperinsulinemia, hyperglycemia and an increase in VLDL production. Accordingly the hepatic excessive VLDL leads to a low high-density lipoprotein (HDL) concentration and hypertriglyceridemia (9,24,25).

Oxidative stress and inflammatory process in NAFLD

Oxidative stress refers to an imbalance between the ROS and the antioxidant molecules (26). Oxidative stress stimulated by ROS could generate oxidative damage and lead to chronic diseases. ROS are highly reactive and thus may interact with cellular membranes, proteins and nucleic acids (27,28). Oxidative stress may result from hepatic overloading of FFA which induces mitochondrial β-oxidation or microsomal enzymes such as cytochrome P4502E1 (CYP2E1). Increased CYP-P450 activity has been observed in obesity and NAFLD in both humans and rodents (29). Increased fatty acid oxidation in mitochondria and CYP2E1 have enhanced NADPH oxidase activity resulting in increased production of the ROS superoxide and hydrogen peroxide by redox cycling of endogenous and exogenous substrates (30-32). ROS overproduction causes cellular damage, which induces lipid peroxidation and consequently mitochondrial dysfunction that contributes to hepatocellular damage. In response to the state of oxidative stress, superoxide dismutase, glutathione (GSH) peroxidase, and catalase activities are increased in NAFLD (33).

ROS production has also indirect hepatotoxic effect via mitochondrial β-oxidation. The peroxisome proliferator activated receptors (PPAR) regulate the fatty acid metabolism and storage. FFA-induced PPAR-α up-regulates carnitine palmitoyltransferase-1 (CPT-1) expression and...
increases the mitochondrial β-oxidation, and regulates the uptake and clearance of fatty acids (14,34,35). Knockout models of PPAR-α have been associated with steatosis, implicating a possible role for PPAR-α in NAFLD (36). Moreover, PPAR-γ is involved in insulin sensitivity and triglyceride storage and is connected with NAFLD. PPAR-γ levels have been found to be increased in the livers of NAFLD mice (14,37).

Tumor necrosis factor-α (TNF-α) and IL-6 are two important pro-inflammatory cytokines produced by injured hepatocytes, immune cells, and activated Kupffer cells and play an important role in inflammation. Both of TNF-α and IL-6 are increased in patients with NASH and their levels are correlated with the severity of inflammation, fibrosis and histological changes in the liver (38-40). Increased TNF-α activates c-Jun N-terminal kinase (JNK) signaling pathway resulting in hepatocyte apoptosis (41).

As mentioned above, NASH is characterized by steatosis with inflammation and hepatocyte ballooning with or without fibrosis (6,8). Leading feature of the NASH is the presence of inflammation and fibrosis. Hepatic stellate cells synthesize several growth factors and extracellular matrix materials such as collagen (42,43). Proliferation of these cells and collagen synthesis induced by cytokines such as TGF-β by Kupffer cells and oxidative stress play a key role in hepatic fibrosis (44,45).

Carotenoids and NAFLD

Due to increasing prevalence and incidence, and lack of established therapeutic intervention, NAFLD has become one of the most important health problems in the world. Obesity and metabolic disorders related to excessive fat intake play an important role in the pathogenesis of NAFLD. Epidemiological studies suggest that lifestyle modifications, such as altered diet with reduced caloric intake, weight loss, and physical activity are safe and effective interventions for improving obesity-mediated insulin resistance and NAFLD (6,46). Therefore, many natural dietary compounds have been studied for prevention and treatment of NAFLD. Carotenoids are among the most studied dietary compounds and their sources are mostly fruits and vegetables. Among the carotenoids, lycopene and β-carotene are the most studied compounds. The exact mechanisms of the protective effects of carotenoids in NAFLD is unclear, but there is evidence from various experimental studies that carotenoids may work through multiple mechanisms, including antioxidant and anti-inflammatory effects (3,4).

In a human study which investigated the association of NAFL and serum levels of carotenoids, serum β-carotene was decreased with fat accumulation in the liver, but the levels of lycopene, α-carotene, β-cryptoxanthin, and lutein were not decreased (47). Another human study reported that plasma levels of carotenoids (lutein, zeaxanthin, β-cryptoxanthin, lycopene, α-carotene, and β-carotene) were significantly decreased in patients with NASH compared to control subjects (48).

Lycopene and NAFLD

Lycopene is a carotenoid that gives tomato and watermelon their red color. It has no vitamin A activity and is classified as a non-provitamin A carotenoid (27,49). Lycopene is a fat-soluble hydrocarbon with 40 carbon atoms and 56 hydrogen atoms (C_{40}H_{56}) (49). It is predominantly concentrated in fatty tissues like adrenal glands, liver, testis and has also been found in different human tissues such as lung, skin, cervix, ciliary body and retinal pigment epithelium (50,51). Major protective effect of lycopene is its antioxidant effect through inactivation of ROS and quenching of free radicals (52). As a potent antioxidant, it has been studied as a potential protective agent in NAFLD. Studies investigating lycopene in NAFLD are listed on Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycopene and NAFLD</td>
</tr>
</tbody>
</table>
Lycopene administration had a preventive effect on experimental NASH induced by HFD in the rat model and lycopene could reduce HFD-induced oxidative stress.

Several studies reported that intake of tomato juice appeared to have a protective effect on NAFLD in rats that are hypercholesterolemic and fed a HFD (24,58). Rats fed tomato juice supplemented diet had lower TG level in plasma and isoprostane content in urine indicating alleviation of oxidative stress. They also had enhanced activity of enzymes involved in mitochondrial and peroxisomal β-oxidation of long-chain fatty acids in NAFLD. Lycopene accumulation in the liver was observed in tomato juice supplemented rats. Others have reported significantly improved absorption of carotenoids linked to...
Table 1: Studies of NAFLD with lycopene

<table>
<thead>
<tr>
<th>Reference</th>
<th>Model</th>
<th>Agent</th>
<th>Main effect</th>
<th>Main conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahcecioglu et al. 2010 (53)</td>
<td>Rat: HFD induced NASH</td>
<td>Lycopene</td>
<td>Decreased CYP2E1 protein, MDA and TNF-α levels, Elevated GSH level</td>
<td>Steatosis and inflammation were significantly lower in lycopene fed rats</td>
</tr>
<tr>
<td>Wang et al. 2010 (54)</td>
<td>Rat: HFD induced NASH promoted DEN-initiated hepatocarcinoma</td>
<td>Lycopene and tomato extract</td>
<td>Lycopene increased nuclear Nrf2- and heme-oxygenase-1 proteins, Tomato extract decreased CYP2E1 and mRNA expression of TNF-α, IL-1β and IL-12</td>
<td>Both lycopene and tomato extract reduced HFD-induced lipid peroxidation in the liver, Lycopene and tomato extract inhibit NASH-promoted hepatocarcinogenesis</td>
</tr>
<tr>
<td>Ahn et al. 2012 (55)</td>
<td>Mouse: HFD induced NAFLD</td>
<td>Lycopene</td>
<td>Up-regulation of miRNA-21 expression, Inhibition of FABP7 expression</td>
<td>Blocked stearic acid-induced intracellular lipid accumulation, Lycopene may be a useful functional compound for treating NAFLD</td>
</tr>
<tr>
<td>Chung et al. 2012 (56)</td>
<td>Mouse: DEN-initiated, HFD-promoted hepatic tumorigenesis and inflammation</td>
<td>APO10LA</td>
<td>Increased SIRT1 gene expression and activity, Decreased hepatic fat accumulation</td>
<td>APO10LA (lycopene metabolite) protects against the development of hepatosteatosis</td>
</tr>
<tr>
<td>Ip et al. 2013 (57)</td>
<td>Mouse: DEN-initiated, HFD-promoted hepatic tumorigenesis and inflammation</td>
<td>APO10LA</td>
<td>Reduce in TNF-α, IL-6, NF-κB p65 protein expression and STAT-3 activity by increased SIRT1 gene expression and activity, Increased AMPK-α phosphorylation</td>
<td>APO10LA can effectively inhibit hepatic tumorigenesis and reduce hepatic inflammation by stimulating SIRT1 signaling</td>
</tr>
<tr>
<td>Bernal et al. 2013 (58)</td>
<td>Rat: hypercholesterolemic and HFD induced NAFLD</td>
<td>Tomato juice</td>
<td>Decreased TG plasma levels and isoprostane urine levels, Increased liver lycopene accumulation, Alleviation of aminoacid depletion, Recovery of the redox balance, Incrementing L-carnitine levels</td>
<td>Lycopene seems to have a protective effect in NAFLD</td>
</tr>
<tr>
<td>Martin-Pozuelo et al. 2014 (24)</td>
<td>Rat: HFD induced NAFLD</td>
<td>Tomato juice</td>
<td>Enhance the activity of mitochondrial and peroxisomal β-oxidation, Reduced hallmark of steatosis</td>
<td>Tomato products should be taken into consideration in the treatment of NAFLD</td>
</tr>
</tbody>
</table>

NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; HFD, high-fat diet; CYP2E1, cytochrome P4502E1; MDA, malondialdehyde; TNF-α, tumor necrosis factor α; GSH, glutathione; DEN, diethylnitrosamine; Nrf2, nuclear factor-E2-related factor 2; FABP7, fatty acid-binding protein 7; APO10LA, Apo-10′-lycopenoic acid; NF-κB, nuclear factor-κB; STAT-3, signal transducers and activators of transcription 3; SIRT, Sirotuin1; TG, triglyceride.
the intake of dietary fat (59).

Wang et al. (54) investigated the protective effect of lycopene and tomato extract supplementation on NASH-promoted hepatocarcinogenesis in rats. HFD-induced NASH-promoted diethylnitrosamine (DEN)-initiated hepatocarcinoma rat model was used in the study. Lycopene and tomato extract could inhibit NASH-promoted hepatocarcinogenesis through reduced oxidative stress but with different mechanisms. They observed significantly decreased cytochrome P450 2E1, inflammatory foci and mRNA expression of proinflammatory cytokines (TNF-α, IL-1β and IL-12) in the tomato extract fed group, but increased nuclear NF-E2-related factor-2 and heme oxygenase-1 proteins in the lycopene fed group.

Carotene-15,15′-monooxygenase (CMO-I) and carotene-9′,10′-monooxygenase (CMO-II) are primary mammalian carotenoid cleavage enzymes. CMO-I cleaves β-carotene to two molecules of retinal, whereas CMO-II preferentially cleaves non-provitamin A carotenoids such as lycopene but also has affinity to other carotenoids such as β-carotene (60-63). CMO-I has been identified as a cytoplasmic enzyme, whereas CMO-II has been identified as a mitochondrial enzyme. These enzymes convert the carotenoids to biologically active metabolites (60). Lycopene may also interfere with the β-carotene and retinoid metabolism. It has been found that lycopene supplementation decreased the expression of CMO-I and PPAR-γ in the kidney and adrenal tissues of rats (64). Apo-10′-lycopenoic acid (APO10LA) a cleavage metabolite of lycopene, generated by CMO-II has the highest provitamin A activity because it is partly converted to vitamin A (73). β-carotene is also the most abundant carotenoid in the liver (42). Among provitamin A carotenoids, β-carotene has the highest provitamin A activity because it is partly converted to vitamin A (73). β-carotene has a strong antioxidant effect through scavenging free radicals and physically quenching singlet oxygen (74). Major source of β-carotene in human diet is primarily green leafy vegetables, carrots, apricots, sweet potatoes, red palm oil, mature squashes, pumpkins, and mangoes (73,75,76). As a potent antioxidant agent in NAFLD. The studies reporting the effects of β-carotene and other carotenoids on NAFLD are summarized in Table 2.

In vivo and in vitro experimental studies have shown potential preventive and therapeutic effects of β-carotene of many proteins such as p53, NF-κB, FOXO, liver X receptor (LXR) (68). Protective effect of overexpression of SIRT1 was found in HFD-induced fatty liver disease (69).

Ahn et al. (55) reported that HFD induced downregulation of miRNA-21 expression was reversed by lycopene. As a post-transcriptional regulator of gene expression, up-regulating miRNA-21 was achieved by lycopene through targeting the fatty acid-binding protein 7 (FABP7). FABPs are most active proteins in long chain fatty acid uptake and metabolism in the hepatocytes. They found that lycopene up-regulated the miRNA-21 and inhibited FABP7 expression and blocked stearic acid (SA) induced intracellular lipid accumulation. They also observed that miRNA could have an important role in hepatic function and its expression was changed by HFD in liver tissues in an animal model (55,70). Ahn et al. also reported that miR-21 expression was decreased in HFD-induced NASH and stearic acid treated Hepa 1-6 cells. NASH was associated with downregulation of miRNA-21 and upregulation of FABP7. FABPs are most active proteins in long chain fatty acid uptake and metabolism in the hepatocytes (71). FABP7 was one of the targets of miRNA-21, and it was directly and inversely associated with miR-21 (55). Lycopene normalized the effects of HFD and regulated the hepatic lipid metabolism in this model. It downregulated PPARγ and fatty acid synthase (FASN) and upregulated CPT1-α, LCAD, PPAR-α and Apoa4 in HFD induced NASH mouse model (55).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Model</th>
<th>Agent</th>
<th>Main effect</th>
<th>Main conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikeuchi et al.</td>
<td>Mouse: HFD induced obesity</td>
<td>Astaxanthin</td>
<td>Inhibition of increased body weight, adipose tissue weight</td>
<td>Astaxanthin prevented obesity and fatty liver disease</td>
</tr>
<tr>
<td>2007 (77)</td>
<td></td>
<td></td>
<td>Reduced liver weight and triglycerides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced plasma triglyceride and total cholesterol</td>
<td></td>
</tr>
<tr>
<td>Harari et al.</td>
<td>Mouse: HFD fed, LDL-receptor knockout mouse</td>
<td>9-cis β-carotene enriched alga</td>
<td>NF-κB associated decreased mRNA levels of VCAM-1, MCP-1, INF-γ</td>
<td>Carotenoid reduced plasma cholesterol and atherogenesis; reduced fat accumulation and inflammation in liver</td>
</tr>
<tr>
<td>2008 (78)</td>
<td></td>
<td>Dunaliella bardawil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozturk et al.</td>
<td>Rat: carbon tetrachloride induced hepatic steatosis and damage</td>
<td>Apricot (β-carotene rich)</td>
<td>Decreased malondialdehyde</td>
<td>Apricot decreased oxidative stress</td>
</tr>
<tr>
<td>2009 (79)</td>
<td></td>
<td></td>
<td>Increased total glutathione levels and catalase, glutathione peroxidase activities</td>
<td>Apricot decreased hepatosteatosis and liver damage</td>
</tr>
<tr>
<td>Tainaka et al.</td>
<td>Zebrafish: diet induced obesity</td>
<td>Campari tomato (lycopene and β-carotene rich)</td>
<td>Decreased srebf1 mRNA</td>
<td>Tomato decreased diet-induced obesity, dyslipidemia and hepatosteatosis</td>
</tr>
<tr>
<td>2011 (80)</td>
<td></td>
<td></td>
<td>Increased of foxo1 gene expression</td>
<td></td>
</tr>
<tr>
<td>Kim et al.</td>
<td>Guinea pig: hypercholesterolemic diet induced NAFLD</td>
<td>Lutein</td>
<td>Decreased hepatic malondialdehyde, TNF-α and free cholesterol</td>
<td>Lutein can be protective in NAFLD by antioxidant effect</td>
</tr>
<tr>
<td>2012 (81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Her et al.</td>
<td>Zebrafish: ubiquitous transcription factor YY1 induced liver steatosis</td>
<td>Astaxanthin</td>
<td>Decreased PPAR-γ and CHOP-10 expression</td>
<td>Preventive effect on hepatosteatosis and triglyceride accumulation in liver</td>
</tr>
<tr>
<td>2013 (82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ha and Kim</td>
<td>Rat: HFD induced NASH</td>
<td>Fucoxanthin</td>
<td>Increased CPT1, CYP7A1 expression</td>
<td>Fucoxanthin can be effective in improving lipid metabolism</td>
</tr>
<tr>
<td>2013 (83)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kobori et al.</td>
<td>Mouse: high-cholesterol and HFD induced NASH</td>
<td>β-cryptoxanthin</td>
<td>Inhibition of inflammatory gene expression in NASH</td>
<td>β-cryptoxanthin reduced hepatosteatosis by reducing oxidative stress</td>
</tr>
<tr>
<td>2014 (84)</td>
<td></td>
<td></td>
<td>Reduced inflammatory response</td>
<td></td>
</tr>
<tr>
<td>Xiao et al.</td>
<td>Rat: HFD induced NASH</td>
<td>Lycium barbarum polysaccharides (β-carotene rich)</td>
<td>Decreased hepatic fat accumulation, hepatic inflammatory response, fibrosis and oxidative stress</td>
<td>These carotenoids were effective in the prevention of NASH</td>
</tr>
<tr>
<td>2014 (85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAFLD, nonalcoholic fatty liver disease; HFD, high-fat diet; NF-κB, nuclear factor-κB; VCAM-1, vascular cell adhesion molecule-1; MCP-1, monocyte chemoattractant protein-1; INF-γ, interferon- γ; FoxO1, Forkhead box O1; PPAR-γ, peroxisome proliferator activated receptor gamma; CHOP-10, C/EBP homologous protein 10; TNF-α, tumor necrosis factor α; CPT1, carnitine palmitoyltransferase-1; CYP7A1, cholesterol 7α-hydroxylase1.
on hepatic inflammation, fibrosis (86) and cirrhosis (87). Another study reported that β-carotene could decrease hepatitis C virus induced-hepatosteatosis via inhibition of HCV RNA replication (88). Dietary β-carotene supplementation has been found to have a protective effect on liver damage. In rats with monocrotaline-induced steatosis, fat accumulation and hemorrhages decreased in the liver with β-carotene supplementation (89).

9-cis β-carotene is an isomer of β-carotene. Harari et al. (78) showed that 9-cis β-carotene supplementation reduced plasma cholesterol concentrations and atherogenesis, and inhibited fat accumulation and inflammation in the livers of mice fed a HFD. This could be due to reduced mRNA levels of inflammatory genes such as vascular cell adhesion molecule-1 (VCAM-1), IL-1α, monocyte chemoattractant protein-1 (MCP-1), interferon-γ (INF-γ).

Hepatic protective effects of some β-carotene rich products have been shown in experimental studies. Administration of an herbal derivative, Lycium barbarum polysaccharides has been shown to have ameliorative effects on hepatic fibrosis, oxidative stress and inflammatory response in HFD induced NASH and cellular steatosis rat model (85).

A study conducted by Ozturk et al. (79) demonstrated that dietary intake of apricot could reduce the risk of hepatic steatosis and damage caused by free radicals. Apricot is a fruit that has a high content of carotenoids, largely β-carotene. Markers of oxidative stress MDA, total GSH levels, catalase, superoxide dismutase and GSH peroxidase activities were significantly altered in carbon tetrachloride induced hepatic steatosis and damage in Wistar rats. Oxidative stress was decreased and hepatic steatosis and damage were ameliorated in rats by β-carotene rich apricot feeding.

In another study, Campari tomato, which contains more β-carotene and lycopene than regular tomato, ameliorates diet-induced obesity, dyslipidemia and hepatosteatosis via downregulation of gene expression related to lipogenesis in the zebra fish model. Campari tomato decreased sterol regulatory element-binding transcription factor 1 (srebf1) mRNA by increase of forkhead box O1 (foxo1) gene expression, which may depend on high contents of β-carotene in this tomato strain (80).

In a human study, researchers found that NAFLD had inverse relationship with vitamin A nutritional status in individuals with class III obesity (90). Retinol and β-carotene serum levels were evaluated as a biochemical indicator. The researchers observed low retinol and β-carotene serum levels in the presence of the NAFLD. They also reported significant association between insulin resistance with retinol and β-carotene levels.

Other carotenoids and NAFLD

Other carotenoids such as astaxanthin, lutein, β-cryptoxanthin, and fucoxanthin have also shown a protective effect in NAFLD.

Hypolipidemic and antioxidant effects of astaxanthin supplementation have been observed in human clinical trials (91,92). Astaxanthin treatment prevented triglyceride accumulation and liver steatosis by inhibiting PPAR-γ in ubiquitous transcription factor YY1 induced zebrafish liver steatosis (82). In another study, astaxanthin prevented the development of hepatic steatosis and lowered plasma total cholesterol and triglyceride in obese mice fed a HFD (77).

A study was performed with lutein administration in hypercholesterolemic diet fed guinea pigs, which showed that hepatic free cholesterol, hepatic MDA and TNF-α were decreased in the lutein supplemented group. The lutein group also had lower NF-κB DNA binding activity. These antioxidant effects of lutein could be protective in NAFLD (81).

An experimental study evaluated the effect of β-cryptoxanthin in mice with high-cholesterol and HFD induced NASH. Comprehensive gene expression analysis was performed in the livers of the mice. β-cryptoxanthin reduced steatosis through alteration in the expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging (84).

Supplementation with fucoxanthin reduced body weight, body and liver fat content, and improved liver function tests in obese premenopausal women with NAFLD (93). Consumption of fucoxanthin was effective in improving lipid and cholesterol metabolism by increasing CPT1, cholesterol 7α-hydroxylase1 (CYP7A1) in CYP7A1 in rats with a HFD. These results suggest that fucoxanthin could be helpful in preventing NAFLD (83).

Conclusions

NAFLD has become one of the most important chronic liver diseases in the developed countries with consistently increased prevalence. Its association with obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and progression to cirrhosis and HCC increases its
clinical importance. Pathogenesis of the NAFLD is a very complex process and may have many mechanisms. Understanding the pathogenetic mechanisms may assist in developing new preventive and therapeutic strategies. Oxidative stress and proinflammatory processes play an important role in the pathogenesis. Carotenoids, which are antioxidant natural compounds, appear to have beneficial effects in the prevention and treatment of NAFLD. Antioxidant and anti-inflammatory properties are the leading mechanisms of actions of carotenoids. These effects modulate intracellular signaling pathways influencing gene expression and protein translation. Recent studies by Ip et al. have provided additional potential mechanisms of lycopene supplementation in beta-carotene-9',10'-oxygenase (BCO2)-knockout mice suppressed oncogenic signals, including Met mRNA, β-catenin protein, and mTOR complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR214 levels. These results provide novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. Future investigations are warranted to understand the precise mechanisms as well as potential preventive and therapeutic effects of carotenoids in NAFLD and HCC.

Acknowledgements

Disclosure: The authors declare no conflict of interest.

References

74. Diplock AT. Antioxidant nutrients and disease prevention: