About this item:

664 Views | 0 Downloads

Author Notes:

Correspondence to: Xiaodong Zhang, PhD. Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA. Email: xzhang8@emory.edu.

The authors thank Sudeep Patel for MRI data collection, Ruth Connelly, Wendy Williamson Coyne, Juliet Brown, Jean Ksiazek, Dr Fawn Connor-Stroud (DVM) for animal care in MRI and surgery; Dr Anapatricia Garcia for necropsy; Drs Manuel Yepes, Byron Ford, Shan Ping Yu, Ling Wei for their thoughtful suggestions.

The authors declare no conflict of interest.


Research Funding:

This project was supported in part by NCRR and currently by the Office of Research Infrastructure Programs (OD P51OD011132, P51RR000165 and OD P51OD011132), and by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR000454.


  • Stroke
  • monkey model
  • diffusion tensor imaging (DTI)
  • arterial spin tagging
  • continuous arterial spin labeling (CASL), cerebral blood flow (CBF)
  • in vivo spectroscopy
  • magnetization transfer (MT)
  • multimodality MRI
  • parallel imaging

A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion


Journal Title:

Quantitative imaging in medicine and surgery


Volume 4, Number 2


, Pages 112-122

Type of Work:

Article | Final Publisher PDF


Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.

Copyright information:

© 2014 AME Publishing Company. All rights reserved.

Export to EndNote