Correlated Conductance Parameters in Leech Heart Motor Neurons Contribute to Motor Pattern Formation

Damon G. Lamb, Ronald L. Calabrese*

Department of Biology, Emory University, Atlanta, Georgia, United States of America

Abstract

Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. For this purpose, we first examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.

Introduction

Many critically important behaviors are controlled by neuronal networks called Central Pattern Generators (CPGs) [1]. CPGs underlie many canonical movement patterns which are critical for life, such as respiration [2], locomotion [3–7], and circulation, the system on which we focus here. The successful production of these movement patterns requires coordinated muscle activity. Motor neurons driven by these CPG networks have generally been considered followers of the CPG output. More recently, studies have found that motor neurons, in particular leech heart motor neurons, themselves contribute to the production of their output patterns [8–10]. While inputs from premotor interneurons of a leech heart CPG are responsible for the majority of the motor neuron output, motor neurons do not simply follow their input: intrinsic properties appear to play an important role [8], although only a few have specifically been studied [9,10].

There is a growing consensus in the field that neurons have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.

Leech Heartbeat System

We investigated the heart (HE) motor neurons that innervate the tubular hearts of the leech. The leech heartbeat system has
been described in great detail previously [19,21–25], so we briefly outline the relevant features of its organization here. The bilateral heart tubes are driven by the ipsilateral member of the pairs of leech heart (HE) motor neurons in ganglia 3 through 18 (HE(3)-HE(18)) of the 21 midbody segmental ganglia [21,26]. These motor neurons are controlled by barrages of inhibitory synaptic input from a core CPG consisting of 7 pairs of interneurons located in midbody ganglia 1–7 of the animal. The motor neurons in ganglia 8 through 14 receive input from the four ipsilateral premotor interneurons of this core CPG, so the temporal pattern of spikes each receives from each ipsilateral premotor interneuron is identical, except for conduction delays, in particular for the two pairs we specifically focus on, HE(8) and HE(12) (Figure 1A). The heart motor neurons in ganglia 3 through 7 receive input from only a subset of the premotor interneurons, as shown in Figure 1A, as well as input from a pair of unidentified interneurons (not shown), and those in 15 through 18 receive additional input from the rear interneurons [25]. The CPG produces a bilaterally asymmetric pattern, with the premotor interneurons on one side coordinated nearly synchronously while the opposite side is coordinated in a peristaltic rear-to-front progression. These two patterns are imposed on the motor neurons, which produce the corresponding patterns, by the interneurons on each side sculpting the tonic activity of ipsilateral motor neuron into bursts with inhibitory synaptic input. Thus each side of the whole heartbeat system expresses one of two coordination modes of activity at any point in time (Figure 1B): either nearly synchronous activity (referred to as the synchronous mode) which gives rise to nearly synchronous contractions in the ipsilateral heart tube, or a rear-to-front progression of activity, which gives rise to a corresponding peristaltic pattern in the ipsilateral heart tube (referred to as the peristaltic mode) [27,28]. The core CPG, and thus the heartbeat system as a whole, alternates between one state (left/peristaltic right/synchronous) where the entire left side of the network is producing the peristaltic pattern and the right side is producing the synchronous pattern, and the reciprocal state (left/synchronous right/peristaltic), with the transitions between these states occurring precipitously every 20–40 beats [29,30]. Since each motor neuron alternately produces both activity modes, each motor neuron has to produce both input-output transformations, with the pattern produced depending on the temporal pattern of its input. Not only do the switches between modes occur every few minutes, but measurements of synaptic weights show no difference between modes [19], so each motor neuron must produce both patterns without any change in its synaptic weights.

To develop a new model of HE motor neurons, we took advantage of a unique complete input-output data set. Norris et al. [23] recorded simultaneously from all interneurons which synapse onto the midbody heart motor neurons as well as from two motor neurons (HE(8) and HE(12)) themselves during both the peristaltic and synchronous modes, giving us a complete temporal pattern of input and output for 12 animals, one of which was used for this investigation (Figure 1). Furthermore, the strength of these synapses was measured in the same preparation after recording these temporal patterns (see Figure 1C). Measures of the motor neuron activity, in particular phase, duty cycle, and spike frequency, can be used as targets associated with a specific input pattern. The combination of the synaptic strengths with the temporal patterns of spikes from each premotor interneuron gave us a complete input pattern that, when combined with corresponding output targets, allows us to focus on the intrinsic properties of the motor neurons we seek to model. It is important to emphasize here that the only difference between the input to the HE(8) and the HE(12) motor neurons is the synaptic weights of their four inputs in each of the coordination modes, although there is a small offset in spike timing of 80 ms due to conduction delay.

The requirement that each model motor neuron must be capable of producing both the peristaltic and the synchronous output patterns appropriate to its segment and the individual animal dataset give us the ability to constrain our models with electrophysiological targets specific to both the peristaltic and synchronous input patterns with which they are simulated.

Previous modeling work has created model leech heart motor neurons which qualitatively captured some of the activity pattern features of those found in the living system, but had difficulty achieving the appropriate phase within a reasonable window [3–10]. This heart motor neuron model simplified the morphological complexity into a single isopotential compartment and contained an incomplete complement of membrane conductances. We built upon these modeling efforts and developed a multi-compartmental leech heart motor neuron model which compromised between capturing morphological complexity and reducing computational complexity and included all active conductances believed to be present in the living system. This model was parameterized by the maximal conductance densities of the active membrane conductances and the electrical coupling as described in the Methods. Each instance of the model had a unique set of specific values for each of these maximal conductance densities. Rather than hand tune or attempt a deterministic multi-target optimization algorithm, we used an evolutionary algorithm to find model instances which achieved our target ranges on our fitness metrics. Evolutionary algorithms, including the specific algorithm we used [31,32], have been shown to be efficient at identifying good model instances, although they are typically stochastic and not guaranteed to be successful [33–35]. To generate and evaluate these model instances, we used an input-output dataset from a single animal and the corresponding targets on each of our metrics. Because we had input-output data for both HE(8) and HE(12) heart motor neurons, we were also able to examine possible differences between them to generate predictions of general properties of leech heart motor neurons.

Methods

We developed a multi-compartmental leech heart motor neuron model parameterized by the maximal conductance (g) densities of voltage-gated membrane currents and the electrical synapse between the two neurons of each pair (Figure 2). We then used a multi-objective evolutionary algorithm to generate a large number of model instances, each defined by the specific parameter values. Each model instance was simultaneously simulated as four neurons in two pairs with the same parameter values, the heart motor neurons in ganglia 8 and 12 (HE(8) and HE(12)), and the resulting membrane voltage traces were evaluated with the quantitative fitness metrics detailed below. We then examined the distribution of model instances in parameter space, the sensitivity of fitness metrics to parameter perturbation, and the response to injected current of quantitatively good (i.e., within target ranges on our fitness metrics) model instances.

Simulation and Analysis Framework

All model instances were implemented in the general neural simulation system (GENESIS) version 2.3 [36], and were simulated with a time step of 0.05 ms using the Crank-Nicolson [37] method of the Hines solver for all objects except the electrical coupling, which was solved with the exponential Euler solver. The resulting soma compartment membrane voltage was recorded with a time step of 0.5 ms and then analyzed with a suite of custom
MATLAB® functions to detect bursts and compute the fitness of each model instance (see Figure 3). The fitness values for all model instances in each generation were passed to a multi-objective evolutionary algorithm [31,32,38], which was implemented in C++ and unchanged except for being adapted to interact with our simulations. These three components were coordinated with Bash shell scripts. Although our framework could run on a desktop computer, we took advantage of its inherently parallel structure, which ensured that each model instance could be simulated and analyzed entirely in isolation, and conducted our evolutions on a high performance computing cluster (Ellipse, Emory IT, ~1024 nodes). The model and associated input/output files will be uploaded to ModelDB upon publication.

Heart Motor Neuron Model

The heart motor neuron model constructed here using GENESIS 2.3 [36] consists of 7 isopotential compartments whose physical dimensions approximate the surface area found in adult leech heart motor neurons as estimated from confocal reconstructions and previously published morphology [39] as shown in Figure 2. In heart motor neurons, a single main neurite tapers from the soma through the ganglion and out into the periphery as an axon. From the main neurite in the ganglion emerge many secondary neurites that branch extensively and form the input regions of the neuron. We approximated the main neurite and axon using four distinct cylindrical compartments with diminishing diameters whose lengths were set to a maximum of 1/10 the
passive electrotonic length constant. The most distal compartment represented the spike initiation zone and axon and is here called the axon compartment. Although there exist no experimental data specifying the exact spike initiation zone, it must be sufficiently distant so that spikes are relatively small when recorded in the soma, and we adjusted the total length of the neurite and axon compartments to achieve an attenuated spike height. The complex structure of the arbor of secondary neurites emerging from the main neurite was approximated by two linked compartments: a passive secondary neurite compartment linked between neurite compartments 1 and 2, and a distal synaptic compartment. Each compartment was linked through an axial resistance determined by its diameter and length to its parent compartment. We thus had a spherical soma compartment (diameter = 40 μm), three neurite compartments (neurite 1 diameter = 10 μm, length = 115 μm; neurite 2 diameter = 9 μm, length = 110 μm; neurite 3 diameter = 8 μm, length = 100 μm), an axon compartment (diameter = 3 μm, length = 58 μm), a secondary neurite compartment (diameter = 5 μm, length = 20 μm), and a synaptic compartment (diameter = 5 μm, length = 5 μm), see Table 1. The passive parameters were set to a specific membrane resistance of 1.1 MΩ, a leak reversal potential of -40 mV, a specific axial resistance of 0.25 Ω/m, and a specific capacitance of 0.02 F/m², resulting in input resistances measured in the soma of ~70 MΩ, which is within the input resistance range observed in the living system [40].
Table 1. Dimensions and upper bounds of conductance densities allowed in the MOEA.

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Length (µm)</th>
<th>Diameter (µm)</th>
<th>Na (S/m²)</th>
<th>P (S/m²)</th>
<th>CaS (S/m²)</th>
<th>K1 (S/m²)</th>
<th>K2 (S/m²)</th>
<th>KA (S/m²)</th>
<th>KCa (S/m²)</th>
<th>Coup (nS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soma</td>
<td>40</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurite 1</td>
<td>115</td>
<td>10</td>
<td>9.5</td>
<td>0.5</td>
<td>375</td>
<td>375</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurite 2</td>
<td>110</td>
<td>9</td>
<td>9.5</td>
<td>0.5</td>
<td>375</td>
<td>375</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurite 3</td>
<td>100</td>
<td>8</td>
<td>9.5</td>
<td>0.5</td>
<td>375</td>
<td>375</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Neurite</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synaptic</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Axon</td>
<td>58</td>
<td>3</td>
<td>3500</td>
<td></td>
<td></td>
<td>500</td>
<td>500</td>
<td>750</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conductance densities are in Siemens per square meter (S/m²) except for Coup, which is the upper bound of the static conductance for the electrical coupling in nS. doi:10.1371/journal.pone.0079267.t001

We then distributed both established conductances and a new calcium-sensitive potassium conductance according to our best estimate of their distribution while still minimizing the number of model parameters by only placing conductances where they were believed to be located and by constraining the neurite compartments to have the same conductance density [8,34,40]. Each isopotential compartment was modeled in the Hodgkin-Huxley formalism with:

\[
C \frac{dV_m}{dt} = -(I_{Na} + I_P + I_{K_A} + I_{K_1} + I_{K_2} + I_{KCa}) + I_{CaS} + I_{syn} + I_{leak} + I_{axial} + I_{inj})
\]

Where all active conductances were modeled as Hodgkin-Huxley style membrane conductances with the general formula:

\[
I_{Na} = g_{Na}m^3h_Na(V_m - E_{Na})
\]

The specific formula for each membrane conductance is given in Table 2. Both \(m \) and \(h \) follow the form:

\[
\frac{dm}{dt} = z_m(V_m)(1 - m) - \beta(V_m)(m)
\]

Where those curves (e.g., Figure 4) were specified for each conductance by curves given by:

\[
m_{\infty}(V_m) = \frac{\alpha(V_m)}{\alpha(V_m) + \beta(V_m)}
\]

And

\[
\tau(V_m) = \frac{1}{\alpha(V_m) + \beta(V_m)}
\]

\[
m_{\infty}(V_m) = \frac{\alpha(V_m)}{\alpha(V_m) + \beta(V_m)}
\]

We then distributed both established conductances and a new calcium-sensitive potassium conductance according to our best estimate of their distribution while still minimizing the number of model parameters by only placing conductances where they were believed to be located and by constraining the neurite compartments to have the same conductance density [8,34,40]. Each isopotential compartment was modeled in the Hodgkin-Huxley formalism with:

\[
C \frac{dV_m}{dt} = -(I_{Na} + I_P + I_{K_A} + I_{K_1} + I_{K_2} + I_{KCa}) + I_{CaS} + I_{syn} + I_{leak} + I_{axial} + I_{inj})\]

Where all active conductances were modeled as Hodgkin-Huxley style membrane conductances with the general formula:

\[
I_{Na} = g_{Na}m^3h_Na(V_m - E_{Na})\]

The specific formula for each membrane conductance is given in Table 2. Both \(m \) and \(h \) follow the form:

\[
\frac{dm}{dt} = z_m(V_m)(1 - m) - \beta(V_m)(m)
\]

Where those curves (e.g., Figure 4) were specified for each conductance by curves given by:

\[
m_{\infty}(C, D) = \frac{1}{1 + e^{C(V_m - D)}}
\]

And

\[
\tau_m(A, B, C, D) = A + \frac{B}{1 + e^{C(V_m - D)}}
\]

Except for \(\tau_{Na} \), for which \(h \) is given by:

\[
\tau_{Na}(A, B, C, D) = A + \frac{B}{1 + e^{C(V_m - D)}} + \frac{0.01}{e^{300(V_m - 0.017)}}
\]

Where \(A \) is the baseline value, \(B \) scale factor, \(C \) is the slope and \(D \) is the midpoint of the hyperbolic tangent curve. See Table 3 for the specific values of \(A, B, C \) and \(D \) for each conductance.

In addition to the established leech conductance models for \(g_{K1}, g_{K2}, g_{KA}, g_{CaS}, \) and \(g_{Na} \), we incorporated, we added a calcium sensitive potassium conductance model based on the \(g_{K2} \) conductance with a right-shifted half activation, slower dynamics, and a saturating linear calcium gate (see Tables 2 and 3) to approximate previously published electrophysiological data [40,41]. To activate the calcium gate of this channel, we added a calcium conductance feeding a calcium pool with a simple exponential decay to baseline (\(\tau = 1.5s \)) linked to the gate. Earlier heart motor neuron models did not include \(g_{KCa} \) or \(g_{CaS} \) even though \(g_{KCa} \) and \(g_{CaS} \) were known to be present [40]. We included \(g_{KCa} \) and \(g_{CaS} \) not only to better replicate what is found in the living system, but because preliminary modeling suggested that they were capable of altering burst characteristics.

Electrophysiological experiments have provided evidence for the rough distribution of established currents with respect to the compartments used to model these motor neurons. The spikes are small when recorded in the soma, indicating that they are initiated in some distal compartment and are not regenerated or sustained by fast sodium conductances in compartments close to the soma, and thus the axon compartment is the only one which contains a fast sodium conductance, \(g_{Na} \). The axon compartment also contains potassium conductances that underlie spike generation and pacing, \(g_{K1}, g_{K2}, \) and \(g_{KA} \). In the model, the neurite compartments act as an integrating region, combining the inhibitory input from the premotor interneurons and its

Correlated Conductances Affect Pattern Formation

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e79267
Correlated Conductances Affect Pattern Formation

Table 2. Hodgkin-Huxley style membrane conductance formulae.

<table>
<thead>
<tr>
<th>Conductance</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak</td>
<td>$I_{\text{leak}} = g_{\text{leak}}(V_m - E_{\text{leak}})$</td>
</tr>
<tr>
<td>Na</td>
<td>$I_{\text{Na}} = g_{\text{Na}}m_{\text{Na}}h_{\text{Na}}(V_m - E_{\text{Na}})$</td>
</tr>
<tr>
<td>ρ</td>
<td>$I_{\rho} = g_{\rho}m_{\rho}h_{\rho}(V_m - E_{\rho})$</td>
</tr>
<tr>
<td>CaS</td>
<td>$I_{\text{CaS}} = g_{\text{CaS}}m_{\text{CaS}}h_{\text{CaS}}(V_m - E_{\text{CaS}})$</td>
</tr>
<tr>
<td>K1</td>
<td>$I_{K1} = g_{K1}m_{K1}h_{K1}(V_m - E_{K1})$</td>
</tr>
<tr>
<td>K2</td>
<td>$I_{K2} = g_{K2}m_{K2}h_{K2}(V_m - E_{K2})$</td>
</tr>
<tr>
<td>KA</td>
<td>$I_{KA} = g_{KA}m_{KA}h_{KA}(V_m - E_{KA})$</td>
</tr>
<tr>
<td>KCa</td>
<td>$I_{\text{KCa}} = g_{\text{KCa}}m_{\text{KCa}}^{2}h_{\text{KCa}}(V_m - E_{\text{KCa}})$</td>
</tr>
</tbody>
</table>

Where V_m is the membrane potential, g_{A} is the conductance, h_{A} is the activation variable, and m_{A} is the inactivation variable. E_{A} is the reversal potential for conductance A. The values for V_m range from -70 to 0 mV. The initial conditions for h_{A} and m_{A} are set to 0.5.

To keep the number of parameters allowed to vary in the evolutionary algorithm to a minimum, the three neurite compartments had the same conductance densities. Each instance of this heart motor neuron model was thus defined by 13 specific conductance metrics. The evolutionary algorithm was allowed to explore parameter values from 0.1 to 4.9 times those hand tuned values (step size of 0.1) with the exception of g_{Coup}, which was limited to less than 3 times the baseline value and used a step size of 0.06, because the initial model value was already at the upper end of what had been observed experimentally, see Table 1 for the maximum allowed value.

Members of each pair of HE neurons, one pair per ganglion, were electrically coupled via g_{Coup}. The input pattern contained a temporal pattern (i.e., the spike times for all 8 premotor interneurons, 4 in each coordination mode) and a synaptic weight profile for each pair of heart motor neurons, and was associated with corresponding target values on the fitness metrics described below.

Input/output Dataset

We chose an input/output dataset from input/output datasets extensively described in previous reports [10,22,23]. Briefly, these datasets consisted of simultaneous extracellular (loose cell-attached patch) recordings from all ipsilateral premotor heart interneurons (HN(3), HN(4), HN(6), and HN(7)) in addition to HE(8) and HE(12) motor neurons, a portion of which is shown in Figure 1. These extracellular recordings were long enough to include both the peristaltic and synchronous modes. The interneuron to motor neuron synaptic weights were subsequently measured by dSEVC (discontinuous single electrode voltage clamp) of the heart motor neurons while still recording from the 4 ipsilateral interneurons. From 12 individual animals thus analyzed, we chose 1 input/output dataset with which to develop and examine this model. The two coordination modes were aligned to produce a complete bilateral input spike time pattern with experimentally observed phasing between the two sides (0.51) [22] and were constructed by aligning the 12 synchronous and 12 peristaltic bursts. When used in our simulations, this input pattern was preceded by a 15s silent period to allow model parameters to settle and to ensure that models were tonically active in the absence of synaptic input, extending the total simulation time to 105s. From each motor neuron we calculated fitness metrics by analyzing the 10 bursts which were both preceded and followed by synaptic input for both neurons in each pair. The output targets for phase, duty cycle and slow wave height in the biological range. The initial hand tuned model generated above did not achieve the target phase within the same tight constraints used in the evolutionary algorithm, but did achieve the target range for the other fitness metrics. The evolutionary algorithm was allowed to explore parameter values from 0.1 to 4.9 times those hand tuned values (step size of 0.1) with the exception of g_{Coup}, which was limited to less than 3 times the baseline value and used a step size of 0.06, because the initial model value was already at the upper end of what had been observed experimentally, see Table 1 for the maximum allowed value.

Members of each pair of HE neurons, one pair per ganglion, were electrically coupled via g_{Coup}. The input pattern contained a temporal pattern (i.e., the spike times for all 8 premotor interneurons, 4 in each coordination mode) and a synaptic weight profile for each pair of heart motor neurons, and was associated with corresponding target values on the fitness metrics described below.

Input/output Dataset

We chose an input/output dataset from input/output datasets extensively described in previous reports [10,22,23]. Briefly, these datasets consisted of simultaneous extracellular (loose cell-attached patch) recordings from all ipsilateral premotor heart interneurons (HN(3), HN(4), HN(6), and HN(7)) in addition to HE(8) and HE(12) motor neurons, a portion of which is shown in Figure 1. These extracellular recordings were long enough to include both the peristaltic and synchronous modes. The interneuron to motor neuron synaptic weights were subsequently measured by dSEVC (discontinuous single electrode voltage clamp) of the heart motor neurons while still recording from the 4 ipsilateral interneurons. From 12 individual animals thus analyzed, we chose 1 input/output dataset with which to develop and examine this model. The two coordination modes were aligned to produce a complete bilateral input spike time pattern with experimentally observed phasing between the two sides (0.51) [22] and were constructed by aligning the 12 synchronous and 12 peristaltic bursts. When used in our simulations, this input pattern was preceded by a 15s silent period to allow model parameters to settle and to ensure that models were tonically active in the absence of synaptic input, extending the total simulation time to 105s. From each motor neuron we calculated fitness metrics by analyzing the 10 bursts which were both preceded and followed by synaptic input for both neurons in each pair. The output targets for phase, duty cycle and slow wave height in the biological range. The initial hand tuned model generated above did not achieve the target phase within the same tight constraints used in the evolutionary algorithm, but did achieve the target range for the other fitness metrics. The evolutionary algorithm was allowed to explore parameter values from 0.1 to 4.9 times those hand tuned values (step size of 0.1) with the exception of g_{Coup}, which was limited to less than 3 times the baseline value and used a step size of 0.06, because the initial model value was already at the upper end of what had been observed experimentally, see Table 1 for the maximum allowed value.

Members of each pair of HE neurons, one pair per ganglion, were electrically coupled via g_{Coup}. The input pattern contained a temporal pattern (i.e., the spike times for all 8 premotor interneurons, 4 in each coordination mode) and a synaptic weight profile for each pair of heart motor neurons, and was associated with corresponding target values on the fitness metrics described below.
spike frequency were those metrics measured in the recorded output pattern and then averaged across the bursts. Slow-wave height and spike height require unclamped intracellular recordings which were not available for every motor neuron, so these targets were taken from established average values from leech heart motor neurons recorded in other experiments. In aggregate, the input/output dataset consisted of spike times and synaptic weight profiles for the 4 premotor interneurons in each coordination mode and fitness targets for the spike height (15 mV), slow-wave height (10 mV), spike frequency (7.37 Hz), peristaltic phase (HE(8): 0.08, HE(12): 0.56), spike height (15 mV), slow-wave height (10 mV), spike frequency (7.37 Hz), peristaltic phase (HE(8): 0.08, HE(12): 0.56), synchronous phase (HE(8): 0.08, HE(12): 0.11), and synchronous duty cycle (HE(8): 0.44, HE(12): 0.46).

Inhibitory Input Synapse Model

The inhibitory input synapse model was based on a previously described spike-mediated synapse model [8, 10] with modifications to more closely match the observed conductance waveform of synaptic events in heart motor neurons. This synapse model consisted of two spike-triggered double exponentials, one with a shorter fall time (\(\tau_{\text{fall}} = 12.5 \) ms, \(\tau_{\text{rise}} = 4 \) ms) and the other with a longer fall time (\(\tau_{\text{fall}} = 150 \) ms, \(\tau_{\text{rise}} = 4 \) ms), with the slower component’s maximum conductance set to 0.33 times the faster component (\(g_{\text{slow}} = 0.33 g_{\text{fast}} \)), resulting in a combined waveform which approximated the shape of inhibitory post-synaptic currents (IPSCs) observed in the living system, which has both spike mediated and graded components [19]. Thus for each spike we have the normalized spike-triggered waveform given by:

\[
\begin{split}
 f_{\text{Syn}}(t) &= \left(\frac{e^{-t_{\text{peak}}/\tau_{\text{rise}}} - e^{-t_{\text{peak}}/\tau_{\text{rise}}}}{e^{-t_{\text{fall}}/\tau_{\text{rise}}} - e^{-t_{\text{fall}}/\tau_{\text{rise}}}} + 0.33 \frac{e^{-t_{\text{peak}}/\tau_{\text{rise}}} - e^{-t_{\text{peak}}/\tau_{\text{rise}}}}{e^{-t_{\text{fall}}/\tau_{\text{rise}}} - e^{-t_{\text{fall}}/\tau_{\text{rise}}}} \right), \\
 \text{where } t_{\text{peak}} &= \frac{\tau_{\text{fall}}\tau_{\text{rise}}\ln(e^{t_{\text{fall}}/\tau_{\text{rise}}})}{\tau_{\text{fall}} - \tau_{\text{rise}}},
\end{split}
\]

(10)

The synaptic reversal potential was set to -62.5 mV as in prior models [9–10] and as measured in the living system [42]. The maximal conductances were initially the unscaled relative strengths reported in [19] but were adjusted with scaling factor (\(\sigma \)) to produce a combined inhibitory input that more closely matched that observed in the living system and was capable of sculpting heart motor neuron bursts in our hand-tuned model as in previous models [9]. Furthermore, in the living system the inhibitory synapses from HN onto HE neuron exhibit intraburst synaptic plasticity: IPSCs are initially quite small and then increase to a plateau level before declining towards the end of each presynaptic burst [19]. This plasticity is believed to be due to presynaptic Ca\(^{2+} \) accumulation as spike-mediated synapses in the leech heartbeat system are known to be modulated by presynaptic Ca\(^{2+} \) entry through LVA Ca channels driven by the slow-wave of presynaptic membrane voltage in heart interneurons [41]. Both presynaptic membrane voltage and free Ca\(^{2+} \) levels are experimentally inaccessible at present, so we approximated modulation by presynaptic background calcium with a pre-calculated modulation waveform that approximated this rising and falling behavior with an exponential rise from a factor of 0.01 to 1 for 90% of the burst duration and then an exponential decay for the final 10%, similar to previous heart motor neuron models [8–10]. For each presynaptic burst (\(I \)) starting at time \(t_0 \) we have the waveform given by:

\[
 M_{\text{HN}(\sigma)}(t) = \begin{cases}
 1 - 0.99e^{-\frac{(t-t_0)}{\tau_{\text{burstlength}}}}, & t \leq 90\% \text{burstlength} \\
 0.01 + 0.99e^{-\frac{(t-t_0)}{\tau_{\text{burstlength}}}}, & t > 90\% \text{burstlength}
 \end{cases}
\]

(11)

For each prerecorded input (each HN spike train), we calculated the appropriate rise- and fall-time constants from the average time for the first and final 5 spikes of each burst, for rise- and fall-time constants, respectively, for each premotor interneuron. The synaptic conductance waveforms summate and were weighted by the relative synaptic weight measured in the living system for each HE neuron HN neuron pair, \(g_{\text{Syn}[\text{HN}(\sigma),\text{HE}(\#)]} \), the modulation waveform \(M_{\text{HN}(\sigma)}(t) \), and the scaling factor (\(\sigma \)) and were combined for each HE motor neuron modeled giving:

\[
 I_{\text{Syn}[\text{HE}(\#)]}(t, V_m) = \sigma(V_m - E_{\text{syn}}) \sum_{\text{HN}(\sigma)} M_{\text{HN}(\sigma)}(t) g_{\text{Syn}[\text{HN}(\sigma),\text{HE}(\#)]} f_{\text{Syn}}(t-t_0)
\]

(12)

Thus the complete input pattern delivered to each model instance consisted of a modulation waveform and a train of spikes for each premotor interneuron. These were delayed with a fixed conduction delay of 20 ms per segment (the delay from ganglion 8 to 12 was thus 80 ms).

Fitness Metrics

Our fitness metrics comprised measures of output attributes that correspond to canonical characteristics of heart motor neuron activity and the overall fictive motor pattern produced. Thus, to evaluate each model instance quantitatively, we used 5 metrics for each neuron being evaluated: phase, duty cycle, intraburst-spke frequency, slow-wave amplitude, and spike height (see Figure 3). Each of these metrics was calculated for every burst of each motor neuron simulated and the resulting values for each burst were then averaged across all bursts for each motor neuron. Because the

![Figure 4. Steady state activation and inactivation curves for voltage-gated conductances.](http://www.plosone.org/doi/10.1371/journal.pone.0079267.g004)
neural activity we were examining was rhythmic and we aimed to describe the relative phase relationships among the various constituent neurons of the system, we had to select a phase reference, an event within each cycle to define as 0 phase. We used the HN(4) interneuron in the peristaltic mode for this phase reference as in previous reports, e.g. [23,26]. The period of each cycle was defined as the time between the middle spikes, with the middle spike defined as the median-spike time of subsequent bursts of the HN(4) interneuron in the peristaltic mode as in [23]. The phase of each neuron was defined by the timing of the middle spike of its burst relative to the associated middle spike of the HE(4) interneuron in the peristaltic mode divided by the associated period of the same. The duty cycle of each neuron was defined as the time between the first and last spikes of each burst divided by the associated period. Intraburst spike frequency was calculated for all interspike intervals within detected bursts, thus excluding spurious spikes between detected bursts, and was averaged within each burst to produce that burst’s mean spike frequency. The soma compartment membrane voltage was split into high- and low-pass components using a low-pass filter (1001 point zero-phase FIR filter with a -10 dB cutoff at 1.794 Hz) such that the high-pass component was the remainder when the low-pass component was subtracted from the original waveform. The slow-wave was the value of the slow-wave portion of the cycle minus the value at the middle spike of the burst. Finally, the spike height was the value of the high-pass filtered soma compartment membrane voltage at the trough of the inhibited portion of the cycle minus the value at the middle spike of the burst. The minimum spike frequency. Although these model instances were almost uniformly deficient on many metrics, we still had to calculate their fitness where possible. In order to calculate the fitness metrics, however, bursts first had to be identified. To do so, the minimum IBI was reduced by a factor of 0.25 until the number of bursts detected matched the number expected for the corresponding input pattern or, failing that, the minimum IBI fell below 50 ms (i.e. below the minimum ISIs typically found during normal activity in the living system). When bursts could not be isolated, or where spikes were not detected, the model instance was considered to be bad or failed. Model instances which produced bursts that could be isolated were considered to be at least quasi-functional (our fitness metrics could at least be calculated), even if most model instances did not produce output within the target ranges.

Table 3. Voltage-gated conductance model parameter values.

<table>
<thead>
<tr>
<th>Name</th>
<th>E_{rev}</th>
<th>m_</th>
<th>h_</th>
<th>(\tau_m)</th>
<th>(\tau_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>45</td>
<td>-150</td>
<td>29</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>p</td>
<td>45</td>
<td>-120</td>
<td>-39</td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>CaS</td>
<td>135</td>
<td>-420</td>
<td>-47.2</td>
<td>360</td>
<td>-55</td>
</tr>
<tr>
<td>K1</td>
<td>70</td>
<td>-143</td>
<td>-21</td>
<td>111</td>
<td>-28</td>
</tr>
<tr>
<td>K2</td>
<td>70</td>
<td>-83</td>
<td>-20</td>
<td>0.057</td>
<td>0.043</td>
</tr>
<tr>
<td>KA</td>
<td>70</td>
<td>-130</td>
<td>-44</td>
<td>160</td>
<td>-63</td>
</tr>
<tr>
<td>KCa</td>
<td>70</td>
<td>-80</td>
<td>-15</td>
<td>0.2</td>
<td>0</td>
</tr>
</tbody>
</table>

Burst Isolation

Our fitness metrics presume the identification of bursts, and this had to be accomplished in an automated fashion so that an unsupervised algorithm, such as the multi-objective evolutionary algorithm, could be used. We defined bursts as a group of 5 or more sequential spikes between which the interspike interval (ISI) was always less than the minimum interburst interval (IBI). For this investigation, the burst detection algorithm initially set the minimum IBI to 1s. Unfortunately, many model instances did not have clearly defined bursts—instead of a clear separation between bursts evident in the cessation of spiking activity for more than 1s, these model instances merely exhibited a reduction in spike frequency. Although these model instances were almost uniformly deficient on many metrics, we still had to calculate their fitness where possible. In order to calculate the fitness metrics, however, bursts first had to be identified. To do so, the minimum IBI was reduced by a factor of 0.25 until the number of bursts detected matched the number expected for the corresponding input pattern or, failing that, the minimum IBI fell below 50 ms (i.e. below the minimum ISIs typically found during normal activity in the living system). When bursts could not be isolated, or where spikes were not detected, the model instance was considered to be bad or failed. Model instances which produced bursts that could be isolated were considered to be at least quasi-functional (our fitness metrics could at least be calculated), even if most model instances did not produce output within the target ranges.

Multi-objective Evolutionary Algorithm (MOEA)

Model instances were generated and selected by a multi-objective evolutionary algorithm (MOEA) previously used to produce crustacean stomatogastric neuron model instances [31,32,38]. Briefly, the first generation was randomized and subsequent generations were bred from exemplars selected independently on each individual fitness metric, with a small amount of random mutation. For example, a model that had an excellent HE(8) peristaltic mode phase (i.e., the best of the present and past generations), but which was unsatisfactory on all other fitness metrics, contributed to the subsequent generation. Since we did not need to create a weighting between the fitness metrics due to the structure of the MOEA, we obviated the complexity and bias that this may produce at the cost of possibly carrying along...
Partial Correlations
We evaluated the linear correlational relationships between parameters by examining the partial correlations (\(r \)) between each pair of parameters [43]. Examining the partial correlation allowed us to evaluate the relationship between parameters while controlling with a general linear model (LM) for the remaining parameters. I.e., for parameters \(X \) and \(Y \) and remaining parameters \(Z \), we calculated the Pearson’s \(r \) between residuals \(X' \) and \(Y' \), that is \(r(X', Y') \), where \(X' = X - \text{LM}(X,Z) \) and \(Y' = Y - \text{LM}(Y,Z) \), alternatively expressed as \(r(X, Y|Z) \), the correlation between \(X \) and \(Y \) given \(Z \). We set the \(p \) threshold conservatively with a Bonferroni correction for multiple comparisons to 3.2e-4 for the remaining parameters which were dropped from this comparison, soma \(g_{K1} \), \(g_{K2} \), \(g_{KCa} \), and axonal \(g_{K1} \), \(g_{K2} \), and \(g_{Na} \). The four parameters which were dropped from this comparison, soma \(g_{K1} \), soma \(g_{K2} \), \(g_{\text{Coup}} \) and neurite \(g_{KCa} \), only had one moderate or stronger partial correlation (where \(|p| > 0.5 \)), that between \(g_{KCa} \) and \(g_{KCa} \). Dropping these four parameters did not substantively influence the recalculation of \(p \) for the remaining parameters.

Parameter Variation
We initially defined three sets of model instances: set A, which met all HE(12) and basic metrics targets, set B, which met all HE(8) and basic metrics targets, and set C, which met all our fitness targets. This latter set C thus contains the 431 model instances which were successful as both HE(8) and HE(12) motor neurons. Since there were too many model instances in sets A and B, approximately 39,000 and 4,500, respectively, to perform parameter variation on all model instances in these groups, we selected a randomly chosen subset of set A and set B with 500 model instances for each. The two subsets were selected to ensure that all sets were mutually exclusive, so subset A contained only models which failed on at least one HE(8) metric and subset B contains models which failed on at least one HE(12) metric. Thus, no model instance appeared in more than one subset and 1431 model instances were examined with parameter variation. Each neurite and axon conductance parameter, plus \(g_{\text{Coup}} \) were systematically varied by \(\pm 50\% \) and \(\pm 25\% \), and then evaluated on our fitness metrics.

Ramp Current Injection
We injected a 5s triangular ramp of current into the soma compartment of the same subsets used for parameter variation (subset A, subset B, set C). After a 10s baseline with no current injected, a 2.5s long ramp from 0 nA to -0.5 nA and then a 2.5s long ramp from -0.5 nA to 0 nA was injected. This was done in the absence of input from the premotor interneurons but with coupling present. We examined and then calculated the change in spike frequency with respect to injected current as well as the last spike time of the downward portion and first spike time of the upward portion relative to time of maximum injected current. We then normalized the resulting F/I curves to the maximal spike frequency observed to better visualize the difference between the downward and upward portion of the ramp injection and calculated the best fit line for the first and second half of each ramp with robust least squares (bisquare weighting) regression. We then analyzed how the first and last spikes differed between the three subsets with a one-way MANOVA and followed up with Bonferroni post-hoc tests.

Results
Can We Produce Key Functional Characteristics of Living Heart Motor Neurons in a Model?
In this study, we successfully created large sets of model instances which replicated, within reasonable tolerances, important functional characteristics of HE(8) and HE(12) motor neurons in the leech heartbeat system: the phase, duty cycle, spike frequency, soma spike height and soma slow-wave height (see Figures 3 and 5). Out of the total of about 700,000 model instances which were simulated across the multiple evolutions, only about 66% produced bursts that could be analyzed, so the range of parameter values we covered was large enough to include regions of parameter space which do not support functional model instances. There were many model instances that achieved all metrics for a given motor neuron (HE(8) or HE(12)) but for only one of the two input modes (peristaltic or synchronous) but not both. These instances cannot be considered functional because the living motor neurons produced both output patterns used as targets [24]. Of the ~500,000 quasi-functional instances that could be analyzed, 8% were functional HE(12) model instances (set A), just under 1% were functional HE(8) models (set B), and about 0.06% were within the target range for all metrics (set C). Approximately 10% of good HE(8) model instances were able to achieve all target ranges, whereas only 1% of good HE(12) model instances were strongly correlated (where \(|r| > 0.5 \)).

| Table 4. Targets, error thresholds and the mean, minimum, maximum, and standard deviation of set C fitness values for each fitness metric. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Fitness metric | Target | Max Error | Mean | Min | Max | Std |
| HE(8)p phase | 0.556 | 0.03 | 0.5288 | 0.526 | 0.5369 | 0.002 |
| HE(8)p duty | 0.377 | 0.1 | 0.3948 | 0.3602 | 0.4161 | 0.0094 |
| HE(8)p phase | 0.077 | 0.03 | 0.1054 | 0.0995 | 0.107 | 0.0013 |
| HE(8)s duty | 0.436 | 0.1 | 0.4752 | 0.4503 | 0.4932 | 0.0085 |
| HE(12)p phase | 0.475 | 0.03 | 0.486 | 0.4714 | 0.4961 | 0.0042 |
| HE(12)p duty | 0.452 | 0.1 | 0.5341 | 0.4814 | 0.552 | 0.0132 |
| HE(12)s phase | 0.143 | 0.03 | 0.1162 | 0.113 | 0.1227 | 0.0021 |
| HE(12)s duty | 0.462 | 0.1 | 0.5421 | 0.506 | 0.5586 | 0.0084 |
| Spike frequency (Hz) | 7.3682 | 7 | 9.6344 | 5.7768 | 14.365 | 1.8715 |
| Spike height (mV) | 15 | 7.5 | 19.0846 | 13.0818 | 22.4996 | 2.0668 |
| Slow wave height (mV) | 10 | 5 | 11.6903 | 7.6234 | 14.8884 | 1.1506 |

doi:10.1371/journal.pone.0079267.t004
instances did so. These observations suggest that the ability of the model to produce the desired HE(8) activity put more stringent constraints on parameters than did the HE(12) activity, but that if a model instance could achieve the desired HE(8) activity then it was also likely to achieve the desired HE(12) activity.

The model instances in set C were by definition quantitatively able to replicate the pattern observed in the living system. Furthermore, the soma membrane voltage waveform qualitatively resembled that recorded from HE motor neurons in the living system. We thus produced a varied set of model instances that appear to be a good representation of HE motor neurons with which to investigate the distribution of and relationship between maximal conductance parameters.

What are the Roles of the Conductances?

The voltage-gated ionic currents, along with passive leak current, synaptic input, coupling, axial current and capacitive current, interact through their influence and dependence on the membrane voltage in complex ways. Figure 6 shows examples of neurite current flows for two instances of a HE(12) motor neuron from set C, where Figure 6A is a typical model instance and Figure 6B is an extreme case which is dominated by I_p and I_K2 with all other active currents small. The dominant feature of our model is the rhythmic barrages of inhibitory synaptic currents that punctuate the normal tonic activity of the model motor. As we can see from inspection of the individual ionic currents, the currents contributed to the model neuron’s activity pattern as generally expected, but I_KA in the neurite was present throughout the burst and during inhibition rather than just between spikes. We examined the currents during three regions of the cycle: during the inhibited portion, during the burst, and during the transitions between inhibition and bursting.

During inhibition, I_Ca,L, I_K1, and I_KCa were not activated, but I_p, I_K2, and I_KA were present. The primary influence these currents had was shifting the baseline membrane voltage according to the size of I_p relative to I_K2 and I_KA. In the exemplary model instances shown in Figure 6, the slow-wave was smaller in the case shown where I_p was predominantly opposed by I_K2 (Figure 6B), and I_p remained more activated during inhibition than I_K2. In the case where I_p was predominantly opposed by I_KA (Figure 6A), the slow-wave was larger. The baseline currents, especially the balance between I_K2 or I_KA and I_p, were critical for these model instances to spike tonically when they were not inhibited and thus to form recognizable bursts. If there was insufficient I_p, or if it was opposed by too much I_K2 or I_KA, then the model instance was not sufficiently excitable to spike tonically without extrinsic current. During bursts the model instances reached a stable tonic level of activity, although there was a small amount of spike frequency adaptation as I_KCa and I_K2 increased throughout the burst. The relative proportions of these baseline currents in the absence of inhibition strongly influenced the spike frequency, the duty cycle, and, to a lesser extent, the phase, as revealed more clearly in the sensitivity analysis below. The spike shape, especially the undershoot, was substantially determined by the faster currents I_KA and I_K1, and model instances with low levels of those currents had less substantial undershoots.

At the beginning and end of inhibitory barrages, we saw the voltage-sensitive dynamics of these currents come into play. At the end of an inhibitory barrage, I_KCa was almost totally absent, but I_KA and I_K2 quickly began to activate more fully, as did I_p. I_p quickly rose to its baseline level, as did I_KA, whereas I_K2 took slightly longer to reach its baseline level, resulting in an earlier first spike in Figure 6B. The net result of the remaining synaptic inhibition and the further activation of these outward currents was a buildup in spike frequency rather than an immediate jump to the maximal tonic spike frequency. At the onset of an inhibitory barrage, I_KCa had reached a steady baseline and contributed to lowering the spike frequency. The outward currents, especially I_K2, began to deactivate, which could prolong spiking. As we see in Figure 6B, the combination of deactivation and a reduced driving force resulted in less opposition to I_p and an additional spike, thus prolonging the burst. The dynamics of the currents as inhibition ends and begins had a primary effect on the first and last few spikes, respectively, and thus also the duty cycle. However, their influence on the first and last few seconds of spikes could also shift the phase of the burst. Although a few spikes at the beginning and end predominantly influenced the duty cycle, the phase tolerance was approximately 2 interspike intervals for the average spike frequency of model instances in set C (1.37 to 3.4 spikes, mean of 2.29), so it did not take many spikes to shift the phase outside the target range. We further explored the difference between the onset and termination of inhibition between model-instance sets with injected hyperpolarizing current ramps below.

How are the Maximal Conductances Distributed in Parameter Space?

We next turned our attention to how the model instances were distributed in parameter space, or how the parameter values for successful model instances were related to each other given that the maximal conductances showed a large range of values. We
found it difficult to directly visualize the potential interactions between parameters when considering the distribution of model instances represented as points in the full 13 dimensional parameter space, so we considered each pair of conductances one at a time. To do so, we examined the 2d projection of the acceptable model instances from sets A, B and C, which contained model instances that achieved the target range on the basic fitness metrics, as well as for HE12 (Set A), HE8 (Set B), and both
HE(8) & HE(12) (Set C) fitness metrics, respectively (Figure 5). In Figure 7 we show overlaid scatter plots for three sets with set A in blue under set B in green under set C in red for each pair of conductance parameters. Starting first with the gross trends which were apparent upon inspection, we saw that neurite \(\bar{g}_P \) was strongly limited in range in all three sets of model instances to a small window about the value used in the base model. When hand tuning our base model, we found that model activity was highly sensitive to neurite \(\bar{g}_P \). When neurite \(\bar{g}_P \) was too high, the model instance could not be sufficiently inhibited to terminate firing and when it was too low the model instance would rarely spike, let alone form bursts. Next, we found that neurite \(\bar{g}_{K2} \) tended towards the lower portion of its allowable range, although the restriction was stronger in sets B and C than in set A. As we saw in Figure 6,

![Figure 7. Effect of parameter interaction on fitness set.](image)

Correlated Conductances Affect Pattern Formation

PLOS ONE | www.plosone.org 12 November 2013 | Volume 8 | Issue 11 | e79267

doi:10.1371/journal.pone.0079267.g007

Black tick marks on the axes and boxes on highlighted subplots indicate the baseline model’s parameter value.
neurite g_{K2} could oppose the effect of neurite g_P, and the influence of neurite g_{K2} on firing was generally opposite that of neurite g_P, although our fitness metrics were less sensitive to perturbation of neurite g_{K2} than neurite g_P. When g_{K2} was too large, the model instance ceased spiking and when it was small, the model instance's activity was not sculpted into identifiable bursts.

When we considered the axonal conductances, we found that the range of g_{Na} was somewhat limited. It could not be too small simply because model instances with very small values of g_{Na} could not produce spikes. The remaining axon conductances were not limited, but there was a tendency towards lower values for axon g_{CaS} that is more obvious in Figures S1–S3. When we examined the electrical coupling in the synaptic compartment, which passed current between the two HE motor neurons in each ganglion, we found an interesting difference between the sets of model instances. In set A, the range of g_{Coup} did not appear to be restricted and there were model instances distributed across the full range of values, whereas in set B, and thus in set C as well, g_{Coup} was restricted to smaller values generally below the hand-tuned value. Larger values of g_{Coup} reduced the phase difference between the coupled neurons as also observed in previous work [8,10], consistent with the sensitivity results below, and the side-to-side phase difference between the targets for HE(12) motor neurons (0.33) was smaller than that for HE(8) motor neurons (0.48).

Next, we considered the interaction between parameters apparent upon inspection of the plots in Figure 7. First, neurite g_P and g_{K2} appeared to be correlated, which is consistent with what was evident when we inspected the currents in individual model instances in Figure 6. The slow wave components of I_P and I_{K2} opposed one another, which mostly mitigated the effects of one another on membrane voltage and excitability. However, even if they perfectly cancelled one another, which they did not, such increases in overall membrane conductance could result in partial shunting, reducing the size of spikes and synaptic inputs as they spread through the affected compartments.

Finally, we come to g_{CaS} and g_{KCa}, which were only present in the neurite compartments. The distribution of model instances for g_{CaS} and g_{KCa} was a non-linear relationship that demonstrates a clear example of why a population approach is well suited to modeling neurons–an average parameter value would likely fall outside of the area of support, an example of a failure of averaging [44].

How are Currents Correlated?

The partial correlations, the correlations between parameters after compensating for the remaining parameters with a linear model, were then examined for set C. Figure 8 shows these partial correlations for a subset of parameters which were used in the final calculation because they had significant p values ($p<0.00032$). Neurite g_{K2} was correlated with neurite g_P, as expected from our inspection of Figure 7, but neurite g_{K2}, axon g_{K2} and axon g_{KA} were also correlated with neurite g_P, which was not clear in Figure 7, but the relationship between neurite g_{KA} and neurite g_P is illustrated by the currents shown shown in Figure 6. This correlation was somewhat unexpected because, unlike g_P and g_{K2}, g_{KA} inactivates and is generally considered to be responsible for delaying spikes [45,46]. However, we did observe a baseline window current during bursts, and to a lesser extent during inhibition, in the neurite compartments. The faster potassium current, neurite g_{K1}, was also correlated with neurite g_P, although this was far weaker and was not present for the axon g_{K2}. Furthermore, there were similar, but weaker, correlations between neurite g_{K1}, g_{K2} and g_{KA} with axon g_{Na} and even weaker with neurite g_{CaS}. We see a similar pattern with the axon g_{CaS} and g_{KCa} correlated with g_{Na} as well as with neurite g_{CaS}, although again the correlations with g_{CaS} were weak. On the other hand, the outward neurite and axon g_{K2}, g_{Ka}, and g_{K1} conductances were negatively correlated with one another, although these correlations were strongest between g_{K2} and g_{Ka} for both axon and neurite. We see the same pattern with the inward currents, where g_P and g_{Na} and g_{CaS} were negatively correlated with one another, although the correlations with g_{CaS} were very weak. Thus the general pattern we observe is that the outward conductance parameters were positively correlated with the inward conductance parameters, whereas the inward conductances were negatively correlated with one another, and similarly the outward conductances were negatively correlated with one another. This pattern of partial correlations held for set A and set B (data not shown), but the partial correlation values were greatly diminished for those sets.

How did the Parameters Influence the Fitness Metrics?

To explore the influence of parameters on fitness metrics, we perturbed model instances by $\pm 25\%$ and $\pm 50\%$ for each neurite and axon parameter, plus coupling. As it was not feasible to simulate approximately 2 million perturbed model instances in sets A, B and C, we randomly selected 500 model instances each from sets A and B as described in Methods, in addition to all of set C. Only data for set C is shown in Figures 9 and 10, but data were consistent across the subsets. Most of the results were consistent with our general expectation that increases in outward conductances should reduce spike frequency and reduce the duty cycle whereas the opposite should be the case for inward conductances. Manipulation of neurite g_{CaS}, however, followed the pattern of outward conductances because an increase in g_{CaS} led to increased I_{KCa}. Spike frequency was most sensitive to perturbations of g_P, consistent with our experience when hand tuning the initial model and with the observation that the range of g_P in good model instances is limited. Duty cycle followed the pattern observed with spike frequency, with increases in outward currents reducing the duty cycle and increases in inward currents increasing it.

We found some unexpected results when we considered the influence of maximal conductance density parameter perturbations on phase. In the peristaltic mode, an increase in neurite g_P resulted in a phase delay and a decrease in g_P resulted in a phase advance, and this was consistent for both HE(8) and HE(12) motor neurons (Figure 9). In the synchronous mode, however, we observed a phase advance for HE(12) and a phase delay for HE(8) as a result of reducing g_P and a minimal effect of increasing g_P. This result was somewhat confounded by the many model instances which failed when g_P was reduced by 50% and the extreme excitability induced by increases in g_P requiring a reduction of the minimum interburst interval to isolate bursts, thus dropping some spikes. However, we found the corresponding reverse pattern when we examined the effect of perturbing neurite g_K or neurite g_{K2}, (Figure 10). In the peristaltic mode, a decrease in neurite g_{KCa} or g_{K2} resulted in a small phase advance and an increase in these conductances resulted in a larger phase delay. In the synchronous mode, an increase in neurite g_{KCa} or g_{K2} resulted in a phase delay in HE(8) and a phase advance in HE(12) motor neurons, consistently in opposition to what was observed for neurite g_P. We also observed a difference between the influence of axon g_{KA} and neurite g_{KCa}. g_{KA}’s canonical role is to regulate spike frequency, primarily through being active after spikes before inactivating enough to allow another spike to be initiated. In the present model, we saw a result consistent with I_{KA}’s canonical role when we increased the axon g_{KCa}, where such an increase resulted in a decreased spike frequency. When we increased the neurite g_{K2}, the activity was not sculpted into identifiable bursts.
The broader goal of our research was to understand how neuronal networks can generate coordinated motor patterns and thus coordinated movements, and, specifically, how the leech heartbeat central pattern generator coordinates segmentally repeated motor neurons into the fictive heartbeat motor pattern.

Discussion

The broader goal of our research was to understand how neuronal networks can generate coordinated motor patterns and thus coordinated movements, and, specifically, how the leech heartbeat central pattern generator coordinates segmentally repeated motor neurons into the fictive heartbeat motor pattern.
Furthermore, we sought to understand better how the intrinsic properties of motor neuron contribute to this input-output transformation. The heartbeat CPG rhythmically inhibits the heart motor neurons, and previous research has shown that, although the majority of the motor neuron output pattern is dictated by this input from the CPG, the heart motor neurons are believed to contribute to pattern formation [9,10]. We thus set out to develop a heart motor neuron model that more fully captured the complexity of the living system than did previous models, and we successfully developed the first model of HE motor neurons that was capable of quantitatively achieving the target ranges on our fitness metrics, including the phasing observed in the living system.

To develop a more realistic heart motor neuron model, we first constructed a baseline hand-tuned multi-compartmental model and then used a multi-objective evolutionary algorithm to generate model instances (variations of this model) that had differing maximal conductance parameters, but all other properties of each model instance remained the same between instances. These model instances were evolved to achieve target ranges on fitness metrics which captured key output measures or electrophysiological characteristics recorded in the living system. In so doing, the algorithm produced model instances which were capable of quantitatively achieving appropriate target phases and soma membrane voltage waveforms that qualitatively resembled those recorded in the living system.

We focused on how the conductance densities contributed to the fitness of model instances because previous modeling studies implicated intrinsic membrane properties in motor neuron phasing [8–10]. We found strong partial correlations between many key conductance densities, in particular between neurite g_{K1}, g_{K2}, g_{P} and axon g_{K1}, g_{K2}, g_{Na}. Parameters that had strong partial correlations, either positive or negative, appear to be linked by their influence on each of the fitness metrics we used to select good model instances. Conductances that opposed one another had the opposite effects on fitness metrics when perturbed while…

Figure 9. Phase, duty cycle and spike frequency sensitivity to neurite g_{P} parameter perturbation. Maximal conductance parameters were perturbed by ±50% and 25% of their initial value for all model instances in set C. The resulting changes in phase, duty cycle and average spike frequency are plotted above for each mode of HE(8) and HE(12) motor neurons. Data shown as mean ± std. doi:10.1371/journal.pone.0079267.g009

Figure 10. Phase, duty cycle and spike frequency sensitivity to neurite g_{K1} and g_{K2} parameter perturbation. Maximal conductance parameters were perturbed by ±50% and 25% of their initial value for all model instances in set C. The resulting changes in phase, duty cycle and average spike frequency are plotted above for each mode of HE(8) and HE(12) motor neurons. Data shown as mean ± std. doi:10.1371/journal.pone.0079267.g010
Selection of Fitness Metrics

We chose a restricted subset of possible fitness metrics – phase, duty cycle, average spike frequency, spike height, and slow-wave height – with which to evaluate our model and to evolve model instances. Phase and duty cycle are fundamental metrics when describing rhythmically active processes. Furthermore, phase and duty cycle, along with spike frequency, specify the output of these motor neurons–the timing, duration, and intensity of the activity that controls the heart muscle fibers they innervate. The average spike frequency, height, and slow-wave height are important metrics that capture the gestalt of heart motor neurons. In the living system, heart motor neurons are not only identified by their location and soma dimensions, but also by their characteristic activity: appropriately phased bursts of relatively small spikes with moderate spike frequency and a marked reduction in soma membrane voltage during inhibition. Thus, the metrics used in the present study represent the minimal complement necessary to accurately evaluate a heart motor neuron model.

Parameter Correlation and Regulation

When we examined the resulting model instances we found several interesting relationships between the maximal conductance parameters we allowed to vary in the evolutionary algorithm. Inward and outward currents that opposed one another were generally positively correlated, whereas those which could compensate for the loss of one another were negatively correlated. These relationships held across compartments. These results validate our intuition that conductances which are broadly in opposition, specifically the persistent inward sodium and the outward potassium conductances, could be ratiometrically increased (coregulated) without substantially altering activity. Conversely, outward currents which could partially compensate for one another were counter-regulated while broadly maintaining...
a characteristic output pattern. In our model, the inward and outward currents had positive partial correlations and thus we would expect them to be co-regulated in the living system provided that the proportions are considered as a larger group than individual pairs of conductances. On the other hand, many of the conductances we found to be correlated have very different dynamics, so it was somewhat surprising to see such strong positive and negative correlations until we considered their influence on the fitness metrics. For example, the target range allowed for phase is small, and achieving it appears to require a coordinated balance between parameters. If we consider a model instance slightly outside of the target range, then shifting into the target range would require coordinated changes to several parameters that individually and in combination shift the phase in the desired direction while not shifting the activity outside of the acceptable range on any other fitness metric. For many models, perturbations of individual parameters helped achieve one target while shifting away from another. Even though the allowable ranges for spike frequency and duty cycle were larger, as were the observed ranges for those metrics in the living system, these metrics are the most sensitive to parameter perturbation, so they could also be driving the observed correlations. The influence on spike frequency in particular appears to be related to the baseline current during the burst, and the conductances with larger baseline currents were more strongly correlated. The prediction that these conductances are correlated and that this is through their influence on the metrics we used to define the model instance sets is supported by a recent investigation in the pyloric CPG of the crustacean stomatogastric ganglion [47]. In that study, a dynamic clamp was used to vary three currents, I_A, I_h, and a compound current, $I_{K_{T,S}}$, and many of the activity attributes measured were influenced by all three currents investigated, with the influence of combinations reflecting compensatory effects between the currents.

One unexpected aspect of our results is that $I_{K_{T,S}}$ appeared to be limited, either through low to moderate values of $g_{K_{T,S}}$ or $g_{K_{Ca}}$. This relationship is likely due to the interaction between $g_{K_{T,S}}$ and $g_{K_{Ca}}$ and their influences on the fitness of model instances. The direct effects of $g_{K_{T,S}}$ were relatively small compared with g_{P}, and $g_{K_{Ca}}$ is not limited in range. Even though the direct effects of $g_{K_{T,S}}$ were small, it is of critical importance because the accumulation of Ca$^{2+}$ in each neurite compartment’s calcium pool gates $I_{K_{Ca}}$, which may have activity-dependent influences on our fitness metrics. I_{Ca} was linked to $g_{K_{Ca}}$’s calcium gate through a simple calcium pool model within each neurite compartment. High levels of both $g_{K_{T,S}}$ and $g_{K_{Ca}}$ resulted in a high level of $I_{K_{Ca}}$, which can prematurely terminate bursts, radically advance phase, reduce the duty cycle, and substantially reduce the spike frequency, all of which result in fitness values outside of the target range. When examined in our sensitivity analysis, increases in $g_{K_{Ca}}$ advanced the phase whereas decreases delayed the phase, although the effect was small. The previous single compartmental model’s synchronous phase was delayed relative to the living system [8], so the phase advance resulting from $I_{K_{Ca}}$ should have helped achieve the target synchronous phase. However, our results showed that $I_{K_{Ca}}$ must be limited. Even so, $I_{K_{Ca}}$ may help achieve the F/I results, as the down ramp of the injected hyperpolarizing current resulted in a lower spike frequency than the up ramp when the model instance resumes firing, although the dynamics of all the conductances in the neurite, axon, and soma compartments will have to be carefully explored in future research to fully elucidate their relative contributions.

Another parameter which appeared to be tightly restricted is g_{P}. The distribution of good model instances in parameter space and the extreme sensitivity of the fitness metrics to perturbation of g_{P} indicate that this conductance is important. This result is not surprising because neurite g_{P} drives the membrane voltage in the axon compartment, via its direct influence in the neurite compartments, into a range where spikes are initiated in the spike initiation zone in the neighboring axon compartment. The opposition of g_{P} by $g_{K_{A}}$ and $g_{K_{2}}$ appears to be a primary driving factor in the correlational relationships we found, and this relationship is likely due to the baseline currents in the neurite compartments.

In contrast to the previous heart motor neuron model, which predicted that a gradient of electrical coupling that increased towards the rear of the animal would be necessary to achieve the intersegmental phase relationships observed in the living system [8,9], we found that a coupling gradient is not necessary for proper pattern formation. Coupling conductance values in the range that supports sets B and C would work just as well for set A, so there was no requirement for a gradient. Furthermore, the coupling in sets B and C appeared to be constrained to the range observed in the living system. We did find that the coupling can influence phase by bringing the phases of the two heart motor neurons in each pair closer, but this effect was small. As such, an increasing gradient from the front to the rear of the animal could help achieve the progressively closer phases between the peristaltic and synchronous heart motor neurons, as predicted by prior modeling work, but our results do not indicate that this is required and thus it is unlikely to be a primary feature of heart motor neurons in the living system.

Neural Identity and the Consequences of Variability

In nervous systems with unambiguously identifiable neurons, such as the leech, in which we can often identify specific neurons by their physical attributes including location, size and morphology, but ultimately by their characteristic activity. We found that attributes of this characteristic activity, as measured by our fitness metrics, are influenced by the conductance densities we allowed to vary between model instances. When we perturbed individual parameters, although some of the fitness metrics might improve (i.e., move closer to their target value) others would move away from the target value. Such a perturbation would typically result in values outside of the target range on at least one metric. The maintenance of multiple attributes of characteristic activity, and thus neural type, requires coordinated changes to multiple conductances that oppose or can compensate for one another, manifesting as partial correlations in our analysis. In systems where the mRNA that codes for the ion channels that underlie membrane conductances has been measured, some correlations have been found to be neural-type specific. For example, in the STNS, the copy number of mRNA coding for hyperpolarization activated non-specific cation current (I_{BH}, I_{K}), a transient potassium current (I_{K}), two delayed rectifier potassium currents (I_{K}, I_{K}), and a calcium sensitive potassium current (I_{Ca}, I_{Ca}) are correlated with one another in combinations and proportions specific to each neuron type [18]. Furthermore, I_{BH} and I_{K} are significantly correlated with activity features such as phase mean interspike interval [11,18,48] and models of the STNS have shown that linear conductance correlations appear to help maintain such activity features as spike and burst phase, spike frequency and count, and other measures of neuronal type [15,49,50]. Even though such correlation can maintain activity features, the cellular cascades responsible are not necessarily activity dependent, as one might initially expect [51,52].

The input patterns and output targets we used were drawn from characteristic activity patterns under standard conditions. When
other input patterns were used in small pilot evolutions, the small number of resulting model instances appeared to follow the same patterns observed in the present data set. The input pattern used here had a middle of the road HE(0)-HE(12) phase progression and was otherwise typical, so we do not believe our results would substantially change given a different input/output data set, but follow-up experiments will have to directly address this question.

In non-standard circumstances – such as the application of drugs, neuromodulation, or perturbation of other cellular parameters – the consequences of intrinsic parameter variability can come to the fore, manifesting as varying responses to perturbation. For example, temperature can affect membrane conductances differently [53]. Simplistically, we can consider the case of two conductances which are strong, but oppose one another, and are exposed to a shift in temperature. If this shift differentially affects these conductances, then the activity pattern it produces can be radically altered or even terminated. For example, if g_P were to be influenced by modulation or temperature out of proportion to g_{K2}, then the result would tend toward extremes, either the cessation of spiking activity or spiking through periods of inhibition. Such a differential response to perturbation is exactly what is believed to underlie the results of recent investigations into the effect of temperature on the crustacean stomatogastric ganglion [54,55]. The differential response of conductances to perturbation is also of concern when we consider the influence of neuromodulators or drugs. Neuromodulators and drugs influence subsets of conductances, but their effects on neural activity is influenced by the extant conductances (ion channels in the cellular membrane) in each neuron. As such, the intrinsic variability of intrinsic properties could lead neurons that appear similar to respond differently to these factors. Recent experimental work in the crab cardiac ganglion has shown disruption of conductances with pharmacological blockers results in differential response between cells, even within a single cell type in an individual animal, and a disruption of normal activity at the network level [56].

General Conclusion
We developed the first model of heart motor neurons that was capable of producing a quantitatively accurate activity pattern and used it to elucidate relationships between parameters that are necessary to maintain the production of this activity pattern. No model will ever perfectly capture the entirety of what it represents—all models are, in some way, limited. In the case of models of neurons, we accept many reductions and simplifications in order to focus on the particular characteristics we are interested in—for example, we collapse regions of the neuron into isopotential compartments and approximate populations of discrete ion channels with Hodgkin-Huxley style differential equation based models, to name just a few common reductions. Even so, we can produce models with striking predictive power that not only accurately represent specific neurons but also elucidate basic mechanisms controlling activity that apply to them and to neurons in general. In this paper, we have taken advantage of some of the unique characteristics of the leech heartbeat system as well as a population based modeling approach to further elucidate the electrophysiology of motor neurons. The model we have developed provides a large population of model instances with which to perform virtual experimentation, including those involving the manipulation of properties and parameters not experimentally accessible in the living system. Furthermore, the approach we have taken easily generalizes to other neuron types or even small neuronal networks.

Supporting Information

Figure S1 Parameter histogram for set A. Counts are normalized to the total number of model instances in set A. Bin size is 0.04.

Figure S2 Parameter histograms for set B. Counts are normalized to the total number of model instances in set B. Bin size is 0.04.

Figure S3 Parameter histograms for set C. Counts are normalized to the total number of model instances in set C. Bin size is 0.04.

Figure S4 Normalized spike frequency vs. injected current. Model instances in subset A, subset B, and set C were probed with a 3s triangular ramp current from 0 to -0.5 nA and back to 0 injected into the soma compartment. Spike frequency is normalized to maximum spike frequency during ramp protocol. Panels A, B, C contain the data for subset A, subset B and set C, respectively. Black dots and the dashed regression lines represent spikes from the first half (downward portion) of the ramp and colored dots and solid regression lines represent spikes from the second half (upward portion). Panel C compares the regression lines from the three groups. Regression lines are calculated with robust least squares regression (bisquare weighting). Weighted R^2 and σ for the regression lines were: subset A downward (0.639, 0.1367), subset A upward (0.848, 0.0999), subset B downward (0.775, 0.1262), subset B upward (0.878, 0.0969), subset C downward (0.865, 0.0834), subset C upward (0.837, 0.0999).

Acknowledgments
The authors would like to thank Brian Norris and Angela Wenning for many useful discussions and the input-output dataset and Tomasz Smolinski for sharing his implementation of the Multi-Objective Evolutionary Algorithm used in the present study.

Author Contributions
Conceived and designed the experiments: DGL RLC. Performed the experiments: DGL. Analyzed the data: DGL. Contributed reagents/materials/analysis tools: DGL RLC. Wrote the paper: DGL.

References

8. Garcia PS, Wright TM, Cunningham IR, Calabrese RJ, 2008 Using a model to assess the role of the spatiotemporal pattern of inhibitory input and

