Asian Americans: Diabetes Prevalence Across U.S. and World Health Organization Weight Classifications

Reena Bharat Oza-Frank, Emory University
Mohammed K Ali, Emory University
Viola Vaccarino, Emory University
K.M. Venkat Narayan, Emory University

Journal Title: Diabetes Care
Volume: Volume 32, Number 9
Publisher: American Diabetes Association | 2009-09, Pages 1644-1646
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.2337/dc09-0573
Permanent URL: http://pid.emory.edu/ark:/25593/fknc3

Final published version: http://care.diabetesjournals.org/content/32/9/1644

Copyright information:
© 2009 by the American Diabetes Association. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), which permits distribution of derivative works, distribution, public display, and publicly performance, making multiple copies, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author. This license prohibits exercising rights for commercial purposes.

Accessed September 14, 2017 7:04 PM EDT
Asian Americans: Diabetes Prevalence Across U.S. and World Health Organization Weight Classifications

REENA OZA-FRANK, PHD, RD1 MOHAMMED K. ALI, MBCHB, MSC2 VIOLA VACCARINO, MD, PHD1,3 K.M. VENKAT NARAYAN, MD1,2,3

RESEARCH DESIGN AND METHODS — Data on Asian American adults (n = 7,414) from the National Health Interview Survey for 1997–2005 were analyzed. Diabetes prevalence was estimated across weight and ethnic group strata.

RESULTS — Regardless of BMI classification, Asian Indians and Filipinos had the highest prevalence of overweight (34–47 and 35–47%, respectively, compared with 20–38% in Chinese; P < 0.05). Asian Indians also had the highest ethnic-specific diabetes prevalence (ranging from 6–7% among the normal weight to 19–33% among the obese) compared with non-Hispanic whites: odds ratio (95% CI) for Asian Indians 2.0 (1.5–2.6), adjusted for age and sex, and 3.1 (2.4–4.0) with additional adjustment for BMI.

CONCLUSIONS — Asian Indian ethnicity, but not other Asian ethnicities, was strongly associated with diabetes. Weight classification as a marker of diabetes risk may need to accommodate differences across Asian subgroups.

From the 1Nutrition and Health Sciences Program, Graduate Division of Biomedical and Biological Sciences, Emory University, Atlanta, Georgia; the 2Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia; and the 3School of Medicine, Emory University, Atlanta, Georgia.

Corresponding author: Reena Oza-Frank, roza@emory.edu.

Published ahead of print at http://care.diabetesjournals.org on 6 June 2009. DOI: 10.2337/dc09-0573.

DIABETES CARE, VOLUME 32, NUMBER 9, SEPTEMBER 2009

1644

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

© 2009 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The proportions of overweight, obesity (using each BMI standard), and diabetes were age- and sex-standardized to the 2000 U.S. population. Proportions were then compared across Asian subgroups and with non-Hispanic whites. Multivariable logistic regression was used to calculate odds ratios (ORs) for diabetes among Asian subgroups compared with non-Hispanic whites. Two-tailed P values of ≤0.05 were considered significant for all analyses. All analyses were done using SAS-callable SUDAAN software (version 9.0; Research Triangle Institute, Research Triangle Park, NC).

RESULTS — Overweight and obesity prevalence were higher in all Asian subgroups and among non-Hispanic whites when using the WHO Asian standard compared with the general standard. Regardless of standard, Asian Indians and Filipinos had statistically similar proportions of overweight and obese subjects but significantly higher proportions than either the Chinese or other Asian categories (P < 0.05) (supplemental table available in an online appendix at http://care.diabetesjournals.org/cgi/content/full/dc09-0573/DC1). Non-Hispanic whites had the highest proportions of obese individuals (P < 0.05) (supplemental table).

Across either BMI standard, Asian Indians had the highest diabetes prevalence compared with all other Asian subgroups and non-Hispanic whites (P < 0.05 for each) (Table 1). Diabetes prevalence in other Asian subgroups and non-Hispanic whites was statistically similar within the different weight categories.

Adjusted only for age and sex and compared with non-Hispanic whites, Asian Indians were more likely to report diabetes (OR 2.0 [95% CI 1.5–2.6]), but other Asian groups were not (Table 1). After adjusting for BMI, Asian Indians

© DIABETES CARE, VOLUME 32, NUMBER 9, SEPTEMBER 2009

CONCLUSIONS — Although the prevalence of overweight and obesity are a function of the BMI standard used, a consistent pattern of higher overweight prevalence was demonstrated in Asian Indians and Filipinos compared with Chinese. Regardless of the BMI standard used, higher proportions of Asian Indians reported diabetes compared with other Asian subgroups and whites. In addition, compared with non-Hispanic whites, Asian Indian ethnicity alone was associated with diabetes, and other Asian ethnicities were not. After adjusting for BMI, all Asian subgroups were more likely to have diabetes than non-Hispanic whites.

Associations between BMI and diabetes have been previously shown to be modified by ethnicity (5). Studies have shown that Filipinos have higher diabetes prevalence than Chinese (6). Asian Indians have higher prevalence of diabetes than several other subgroups, and the risk increases at lower BMI thresholds (5). Although we do not know why there are differences in diabetes prevalence across Asian subgroups, a possible explanation is the differential associations between quantity and distribution of adiposity and metabolic risk. For example, increased susceptibility to diabetes in Asian Indians compared with Europeans (7) despite lower BMIs (8) is attributed to central adiposity, which may be due to lifestyle and/or genetic/intrauterine pre-disposition.

The use of BMI as a measure of body proportion is a limitation because of its inability to provide information on body fat distribution and central adiposity. Continued routine use of BMI in research and clinical practice is related to logistical ease in collecting height and weight (measured or self-reported) data. The WHO Asian weight standard is viewed as acceptable when more precise measures of adiposity are not available; however, this study suggests that for Asian Indians, ethnicity alone may be as informative as BMI with regard to diabetes risk.

A limitation of this study is the use of self-reported data, including self-reported height, weight, and diabetes. Although undiagnosed diabetes cannot be assessed using NHIS, a study in New York found that Asians had a rate of undiagnosed diabetes similar to that of non-Hispanic whites (9). As a result, the current study most likely underestimates the total diabetes prevalence in these populations. Furthermore, NHIS is a cross-sectional survey and does not include body weight at the time of diabetes diagnosis. The main strength of this study is the use of nationally representative data with a relatively large Asian sample.

In conclusion, this study demonstrates that Asian Indian ethnicity alone is associated with diabetes risk. We also find that the utility of the WHO Asian weight standard as a marker of diabetes risk may not be equivalent across different Asian subgroups. Prospective studies assessing the complex relationships between body shape, size, fat distribution, and development of cardiometabolic diseases across heterogeneous Asian groups are needed.

References

Table 1—Diabetes prevalence by BMI standard and OR (95% CI) for diabetes by ethnic group

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>General</th>
<th>Diabetes Prevalence</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Overweight</td>
<td>Obese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Filipino</td>
<td>0.3 ± 0.2</td>
<td>0.6 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>0.8 ± 0.2</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>Chinese</td>
<td>0.1 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>Asian Indian</td>
<td>0.3 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>Other Asian</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>27.5 kg/m²</td>
<td>22.0–27.4 kg/m²</td>
<td>≥27.5 kg/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Filipino</td>
<td>0.3 ± 0.2</td>
<td>0.6 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>0.8 ± 0.2</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>Chinese</td>
<td>0.1 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>Asian Indian</td>
<td>0.3 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>Other Asian</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
</tbody>
</table>

Oza-Frank and Associates
Diabetes prevalence among Asian Americans

