Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis

Shana M. Benton, Emory University
Zhe Liang, Emory University
Li Hao, Emory University
Yongliang Liang, Emory University
Gautam Hebbar, Emory University
Dean P Jones, Emory University
Craig Coopersmith, Emory University
Thomas R Ziegler, Emory University

Journal Title: Journal of Inflammation
Volume: Volume 9, Number 36
Publisher: BioMed Central | 2012-10-04, Pages 1-6
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/1476-9255-9-36
Permanent URL: http://pid.emory.edu/ark:/25593/dzd44

Final published version: http://www.journal-inflammation.com/content/9/1/36

Copyright information:
© 2012 Benton et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/), which permits distribution of derivative works, distribution, public display, and publicly performance, making multiple copies, provided the original work is properly cited. This license requires copyright and license notices be kept intact, credit be given to copyright holder and/or author.

Accessed December 29, 2018 7:58 AM EST
Abstract

Background: Glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) are major redox pools with important roles in cytoprotection. We determined the impact of septic peritonitis on thiol-disulfide redox status in mice.

Methods: FVB/N mice (6–12 week old; 8/group) underwent laparotomy with cecal ligation and puncture (CLP) or laparotomy alone (control). Sections of ileum, colon, lung and liver were obtained and GSH, GSSG, Cys and CySS concentrations determined by HPLC 24 h after laparotomy. Redox potential \([E_h] \text{ in millivolts (mV)}\) of the GSH/GSSG and Cys/CySS pools was calculated using the Nernst equation. Data were analyzed by ANOVA (mean ± SE).

Results: GSH/GSSG \(E_h\) in ileum, colon, and liver was significantly oxidized in septic mice versus control mice (ileum: septic: \(-202±4\) versus control: \(-228±2\) mV; colon: \(-195±8\) versus \(-214±1\) mV; and liver: \(-194±3\) vs. \(-210±1\) mV, all \(P<0.01\)). Lung GSH/GSSG redox was similar in each group (\(-191±3\) versus \(-190±2\) mV). In contrast, ileal and colonic Cys/CySS \(E_h\) was unchanged with CLP, while liver and lung Cys/CySS \(E_h\) became significantly more reducing (liver: septic = \(-103±3\) versus control \(-90±2\) mV; lung: \(-101±5\) versus \(-81±1\) mV, each \(P<0.05\)).

Conclusions: Septic peritonitis induced by CLP oxidizes ileal and colonic GSH/GSSG redox but Cys/CySS \(E_h\) remains unchanged in these intestinal tissues. In liver, CLP oxidizes the GSH/GSSG redox pool and CyS/CySS \(E_h\) becomes more reducing; in lung, CLP does not alter GSH/GSSG \(E_h\), and Cys/CySS \(E_h\) is less oxidized. CLP-induced infection/inflammation differentially regulates major thiol-disulfide redox pools in this murine model.

Keywords: Cysteine, Glutathione, Peritonitis, Redox, Sepsis
role as a primarily tissue antioxidant; the product of
GSH oxidation, GSSG, is reduced back to GSH by GSSG
reductase [5,6]. These redox pools are useful as an index
of oxidative stress, as it includes components directly
reflecting the availability of GSH for protection against
oxidative reactions and the generation of GSSG from
oxidative reactions in the correct stoichiometry [12,13].
Although Cys is regulated independently of GSH during
inflammatory and other responses [9,10,15], the redox
potential or reducing force (Eh) of the GSH/GSSG
couple compared to Cys/CySS Eh provides an integrated
picture of oxidative stress within a tissue. However, to
date there have been no studies exploring concomitant
responses of these two redox couples in tissues in re-
respond to an oxidative challenge.

Several studies in animal models show that intestinal
ischemia, radiation injury, or infection is associated with
a decrease in GSH in plasma and tissues and associated
organ dysfunction [3,4,16-19]. Although GSH synthesis
is dependent upon the availability of cysteine, little is
known regarding regulation of this precursor redox pool
in tissue in response to infection. The aim of this study
was to determine the concomitant regulation of tissue
GSH/GSSG and Cys/CySS redox state in a model of
cecal ligation and puncture (CLP)-induced peritonitis in
mice.

Methods

Animals and experimental design
Female FVB/N strain mice (6–12 week old) were main-
tained on a 12 h light–dark schedule in a specific
pathogen-free environment with unlimited access to
standard laboratory mouse chow. All protocol pro-
duress were approved by the Emory University Institu-
tional Animal Care and Use Committee. A total of 16
study mice were divided into two groups (8/group): 1)
mice with CLP-induced peritonitis; and 2) mice without
sepsis (sham surgery as control). Mice were subjected to
CLP using a 30-gauge needle, an established murine
model of septic peritonitis and increased tissue proin-
flammatory cytokines in our laboratory [20,21]. This
model results in a 27% seven-day mortality rate [20].
Briefly, anesthesia was induced and maintained with iso-
flurane and 5% oxygen. A small midline abdominal inci-
sion was made and the cecum exteriorized and ligated
with 4–0 silk immediately distal to the ileocecal valve
without causing intestinal obstruction. The cecum was
then punctured once with a 30-gauge needle and a small
amount of stool was extruded. The cecum was returned
to the abdomen and the abdomen wall closed. Mice
received 1 mL 0.9% NaCl resuscitation fluid subcutane-
ously immediately post-operatively and received bupre-
norphine, 0.1 mg/kg, post-operatively for pain control.
Metronidazole (25 mg/kg, Sigma, St. Louis, MO) and
ceftriaxone (0.05 mg/kg, Sigma) treatment was initiated
1 hour after CLP and repeated at 12 hours. Animals
were sacrificed at 24 hours.

HPLC analyses
Defined segments of full-thickness ileum, colon, lung
and liver were derivitized with iodoacetic acid and dan-
syl chloride. Samples were analyzed by HPLC 24 h after
laparotomy and GSH, GSSG, Cys and CySS quantitated.
The Nernst equation was used to calculate the redox po-
tential (Eh, in millivolts or mV) of the GSH/GSSG and
Cys/CySS redox pools, respectively, in each tissue. Eh
values that are less negative represent a more oxidized
redox pool compared to more negative values.

Quantitative real time PCR analysis
Total RNA was extracted using TRizol (Molecular
Research Center, Cincinnati, OH) from proximal
ileum and colon. RNA concentration was spectrophotometri-
cally determined at 260nm, and 1ug of
total RNA was used to synthesize 10ul of cDNA
using the iScript kit (Bio-Rad, Hercules, CA). Quanti-
tative real- time PCR was performed on cDNA sam-
ples using iQ SYBR Green Supermix kit (Bio-Rad,
Hercules, CA) with the Gene Amp 7000 system (PE
Biosystem). Changes in relative gene expression be-
tween groups were calculated using the 2-ΔΔCT
method with normalization to B-actin. Specific primers
were designed using the Primer Express Program (Applied
Biosystems, Foster City, CA) [21]. The sequence of pri-
mers used were: 5′- AGGCTGCCCCGACTACGT- 3′
(forward) and 5′- GACTTTCTCTGTGATGAG-
ATAGCAA-3′ (reverse) for TNF-α, 5′- ACAAG-
TCGGAGGCTTAATTACACAT-3′ (forward) and 5′-
TTGCCCATTGCAACAATCTTTTTC-3′ (reverse) for IL-6,
5′- ACCCACACTGTGCCCATCTAC-3′ (forward) and
5′- TCGGTGAGGATCTTCATGAGTA-3′ (reverse) for
B-actin.

Statistical analyses
Data were analyzed by unpaired t-test. Results (mean ±
SE) were considered significant at p ≤ 0.05. Pearson
Regression analysis was used to associate cytokine mRNA
expression and the GSH/GSSG Eh, the CyS/CySS Eh.

Results
The CLP group exhibited a marked decrease in GSH and
a modest increase in GSSG concentration in ileum
(Table 1), associated with a significantly more oxidized
GSH/GSSG Eh versus control mice (Figure 1A). In colon,
CLP also induced a significant decrease in GSH and an in-
crease in GSSG concentration (Table 1) leading to a sig-
ificantly more oxidized GSH/GSSG Eh (Figure 1B). In
liver, the CLP group showed a significant 75% decrease in
GSH concentrations (Table 1). However, in contrast to the CLP response observed in ileum and colon, GSSG levels also fell markedly (50%) in response to CLP-induced peritonitis, suggesting a greater decrease in the hepatic GSH + GSSG pool size. These changes also resulted in a net oxidation of hepatic GSH/GSSG E_h (Figure 1C). In lung, CLP induced a modest 25% decrease in GSH concentration but a more marked decrease (50%) in GSSG concentration (Table 1). In contrast to the net oxidation of GSH/GSSG pools observed in splanchnic tissues, these changes resulted in no difference in lung GSH/GSSG E_h redox state between CLP-treated and control animals (Figure 1D).

Cys/CySS redox was differentially regulated in these mice compared to GSH/GSSG redox. In ileum, we observed no statistical difference in Cys or CySS concentrations or in Cys/CySS E_h between the CLP and control groups (Table 2 and Figure 2A). In colon, there was no statistical difference in Cys and CySS concentrations or in Cys/CySS E_h versus control mice (Table 2 and Figure 2B). In liver, CLP induced a 2.4-fold increase in Cys and a 1.8-fold increase in CySS concentrations, respectively (Table 2); however, in direct contrast to the marked oxidation of hepatic GSH/GSSG E_h, the CyS/CySS E_h was modestly but significantly more reducing after CLP administration, probably as a result of increased Cys + CySS pool size (Figure 2C). In lung, CLP induced a 2-fold increase in Cys concentrations, while CySS remained unchanged. This resulted in a more reducing Cys/CySS redox status (Figure 2D).

RNA expression levels of pro-inflammatory/anti-inflammatory cytokines were also measured in ileum, colon, liver and lung. We observed no significant difference in TNF-α and IL-6 expression compared to control between tissues (Table 3). There was no significant correlation between cytokine mRNA expression and the GSH/GSSG E_h, the CyS/CySS E_h (not shown).

Discussion

In this study, we show that CLP-induced peritonitis differentially regulates the two major thiol-disulfide redox pools in mouse tissue. Substantial evidence has shown that sepsis and shock is associated with increased oxidative stress and depletion of tissue GSH, which in turn may contribute to organ dysfunction and impaired host response to infection [17-19]. Our results show that these redox pools are differentially regulated within and between different organs 24 hr after induction of peritonitis. CLP induced a marked 25%-50% decrease in GSH concentrations in all tissues (ileum, colon, liver and lung). In contrast, GSH disulfide (GSSG) levels increased slightly, but significantly, in ileum and colon.

<table>
<thead>
<tr>
<th>Table 1 Tissue GSH and GSSG Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ileum</td>
</tr>
<tr>
<td>Sham CLP</td>
</tr>
<tr>
<td>GSH 9.8±0.3 5.1±0.4</td>
</tr>
<tr>
<td>GSSG 0.2±0.0 0.3±0.1</td>
</tr>
<tr>
<td>Colon</td>
</tr>
<tr>
<td>Sham CLP</td>
</tr>
<tr>
<td>GSH 6.8±0.5 4.6±0.9</td>
</tr>
<tr>
<td>GSSG 0.2±0.0 0.3±0.0*</td>
</tr>
<tr>
<td>Liver</td>
</tr>
<tr>
<td>Sham CLP</td>
</tr>
<tr>
<td>GSH 11.5±0.6 4.4±0.4*</td>
</tr>
<tr>
<td>GSSG 0.8±0.1 0.4±0.1*</td>
</tr>
<tr>
<td>Lung</td>
</tr>
<tr>
<td>Sham CLP</td>
</tr>
<tr>
<td>GSH 5.8±0.7 4.2±0.3*</td>
</tr>
<tr>
<td>GSSG 0.9±0.1 0.5±0.1*</td>
</tr>
</tbody>
</table>

Glutathione (GSH) and glutathione disulfide (GSSG) concentrations as nmol/mg protein. CLP cecal ligation and puncture. *P < 0.05 by unpaired t-test.

Figure 1 CLP caused a more oxidized GSH/GSSG redox potential in ileum, colon and liver. The Nernst equation was used to calculate the redox potential (E_h, in millivolts or mV) of the GSH/GSSG redox pool in each tissue. Values are mean ± SEM, with an n=8/group. Data shown are from ileum (A), colon (B), liver (C), and lung (D) GSH/GSSG redox potential. ** P < 0.05, * P = < 0.01.
but decreased approximately 50% in liver and lung. These changes resulted in a significant oxidation of the GSH/GSSG E_h in ileum, colon and liver, but no change in redox potential of this pool in lung. Thus, oxidized GSH/GSSG E_h in the intestinal tissues with local peritonitis appears to be due to a combination of decreased GSH and an increase in GSSG concentrations, respectively. In contrast, the oxidation of hepatic GSH/GSSG E_h in this model is likely due to an overall decrease in GSH/GSSG pool size, possibly due to increased requirement for hepatic antioxidant (GSH) defense in response to bacteria and/or bacterial toxins [e.g. lipopolysaccharide (LPS), flagellin] presented to the liver via the portal circulation. Previous studies have shown that CLP induces pro-inflammatory cytokine-mediated lung injury in mice [22]. In addition, CLP-induced peritonitis in rats decreased GSH concentrations in lung in association with markers of lipid peroxidation (oxidative stress) in this tissue [23,24]. In our study, we also showed a modest, but significant decrease in GSH levels in lung in the CLP group. However, lung appeared to demonstrate an adaptive response to CLP-induced peritoneal infection/inflammation, given the concomitant decrease in GSSG resulting in no change in GSH/GSSG E_h (Figure 1D). In our study, we observed no change in TNF-α and IL-6 mRNA expression in lung or other tissues and no correlation with these indices and the GSH/GSSG E_h, the CyS/CySS E_h. Thus, local proinflammatory cytokine expression may not regulate the redox changes were observed, although possible cytokine expression changes at earlier time points after CLP may play a role.

Previous studies by our group have demonstrated that the GSH/GSSG and CyS/CySS redox pools can be differentially regulated under a variety of conditions and essentially reflect distinct redox nodes [15,25]. In HT-29 human colonic epithelial cells, we found that these thiol/disulfide redox couples were differentially regulated during extracellular oxidation [25]. In mice, we previously showed that administration of LPS oxidized CyS/CySS E_h in lung epithelial lining fluid, although lung tissue was not analyzed [10]. In the current study, we found that CLP-induced peritonitis did not significantly alter CyS or CySS concentrations or CyS/CySS E_h in ileum and colon. In contrast to responses in the two intestinal tissues, CLP resulted in a 2.4-fold upregulation in CyS level and a lesser 1.8-fold increase in CySS levels in liver, resulting in a more reducing CyS/CySS E_h in this tissue.

<table>
<thead>
<tr>
<th>Table 2 Tissue Cys and CySS Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cys</td>
</tr>
<tr>
<td>CySS</td>
</tr>
</tbody>
</table>

Cysteine (Cys) and cystine (CySS) concentrations as nmol/mg protein. CLP cecal ligation and puncture. *P< 0.05 by unpaired t-test.

Figure 2 CLP caused a more reduced E_h CyS/CySS redox potential in liver and lung. The Nernst equation was used to calculate the redox potential (E_h, in millivolts or mV) of the CyS/CySS redox pool in each tissue. Values are mean ± SEM, with an n=8/group. Data shown are from ileum (A), colon (B), liver (C), and lung (D) GSH/GSSG redox potential. * P< 0.05; **P = < 0.01.
In lung, CLP-induced peritonitis resulted in 2-fold increase in Cys and no change in CySS concentrations, respectively, leading to a modestly more reducing Cys/CySS Eh in this tissue.

The differential regulation of the thiol-disulfide redox pools in ileum, colon and liver examined in our model of infection/inflammation are consistent with in vitro studies of Jones et al. [15], who showed that under conditions of GSH depletion, the Cys/CySS redox couple is not affected, suggesting that the redox state of Cys/CySS in this tissue is not directly determined by the redox state of GSH/GSSG. A limitation of our study is the lack of systemic plasma redox measures to compare with tissue changes, but in our previous studies in rats, changes in intestinal plasma redox measures to compare with tissue changes, is not directly determined by the redox state of GSH/GSSG. This is consistent with in vitro studies on the potential cytoprotective effects of agents that support rapid mobilization of Cys, as suggested by the increase in liver and lung after CLP in our model, but changes in the cellular transporters for CySS and/or Cys or other factors, including protein catabolism could potentially play a role [14]. Our data suggest that the GSH/GSSG redox pool in splanchnic tissue is more sensitive to oxidation in response to local peritonitis that the Cys/CySS pool in this tissue bed. Thus, translational studies on the potential cytoprotective effects of agents to upregulate the GSH pool during peritonitis (e.g. glutamine, n-acetyl-cysteine therapy, dietary sulfur amino acid supplementation) may be of interest [3,8,16]. In addition, dietary sulfur amino acid supplementation is a method to increase tissue Cys and thus improve the reducing power of the Cys/CySS redox couple in tissue and to decrease the pro-inflammatory effects of LPS mediated by interleukin-1β [5,8,9,11,13]. Because little is known about the functional consequences of altered Cys/CySS redox state in tissue, further work is needed to understand both the regulation and role of this redox couple, including as it relates to changes in tissue GSH/GSSG Eh, in models of infection/inflammation.

Conclusions

Septic peritonitis induced by CLP oxidizes ileal and colonic GSH/GSSG redox but Cys/CySS Eh remains unchanged. In liver, CLP oxidizes the GSH/GSSG redox pool and CyS/CySS Eh becomes more reducing; in lung, CLP does not alter GSH/GSSG Eh, and Cys/CySS Eh is less oxidized. CLP-induced infection/inflammation differentially regulates major thiol-disulfide redox pools in this murine model.

Abbreviations

GSH: Glutathione; GSSG: Glutathione Disulfide; Cys: Cysteine; CySS: Cystine; CLP: Cecal Ligation and Puncture; HPLC: High Performance Liquid Chromatography; LPS: Lipopolysaccharide.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TRZ and CMC conceived the study, SMB, ZL, and LH collected the samples; ZL performed the CLP surgeries and maintained the mice; DPJ and YL performed redox analysis; SMB and DPJ analyzed the data; SMB and TRZ authored the manuscript; SMB, GH, TRZ, DPJ, and CMC prepared the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by National Institutes of Health grant K24 RR023356 (TRZ), T32 DK 007734 (SMB), ES009047 (DPJ), ES011195 (DPJ) and R01 GM072808 (CMC).

Author details

1Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322-0001, USA. 2Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322-0001, USA. 3Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA 30322-0001, USA.

Received: 10 April 2012 Accepted: 2 October 2012
Published: 4 October 2012

References

Table 3 Cytokine mRNA expression in tissue

<table>
<thead>
<tr>
<th></th>
<th>Ileum</th>
<th></th>
<th>Colon</th>
<th></th>
<th>Liver</th>
<th></th>
<th>Lung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>CLP</td>
<td>Sham</td>
<td>CLP</td>
<td>Sham</td>
<td>CLP</td>
<td>Sham</td>
<td>CLP</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.3±0.2</td>
<td>1.3±0.1</td>
<td>1.1±0.1</td>
<td>1.5±0.3</td>
<td>1.1±0.1</td>
<td>1.2±0.0</td>
<td>1.3±0.1</td>
<td>1.3±0.1</td>
</tr>
<tr>
<td>IL-6</td>
<td>ND</td>
<td>ND</td>
<td>1.2±0.0</td>
<td>1.4±0.2</td>
<td>1.5±0.4</td>
<td>1.3±0.2</td>
<td>1.2±0.0</td>
<td>1.3±0.0</td>
</tr>
</tbody>
</table>

TNF-α and IL-6 mRNA expression, normalized to β-actin, was measured via qRT-PCR in RNA extracts of ileum, colon, liver and lung. ND not detectable.

Cite this article as: Benton et al: Differential regulation of tissue thioldisulfide redox status in a murine model of peritonitis. Journal of Inflammation 2012 9:36.