About this item:

140 Views | 103 Downloads

Author Notes:

William Checkley, Phone: 443-287-4587, Email: wcheckl1@jhmi.edu

All authors read and approved the final manuscript. The CIOS investigators contributed to the study concept and design and the acquisition of data. SS, CM, RB, and WC contributed to the analysis and interpretation of data. SS, CM, and WC contributed to the statistical analysis. SS and CM contributed to the writing of the manuscript. SS, CM, GM, TG, JS, RB, and WC contributed to the critical editing of the content.

The authors declare that they have no competing interests.


Research Funding:

The research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number T32HL007534 (SS and CM) and the Pearl M. Stetler Research Fellowship (SS).

Dr. Martin (GM) was supported in part by the NIH under award UL1 TR-000454 (NCATS).


  • ARDS
  • Acute respiratory failure
  • Driving pressure
  • Mechanical ventilation

Association between hospital mortality and inspiratory airway pressures in mechanically ventilated patients without acute respiratory distress syndrome: a prospective cohort study


Journal Title:

Critical Care


Volume 23, Number 1


, Pages 367-367

Type of Work:

Article | Final Publisher PDF


BACKGROUND: Higher inspiratory airway pressures are associated with worse outcomes in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS). This relationship, however, has not been well investigated in patients without ARDS. We hypothesized that higher driving pressures (ΔP) and plateau pressures (Pplat) are associated with worse patient-centered outcomes in mechanically ventilated patients without ARDS as well as those with ARDS. METHODS: Using data collected during a prospective, observational cohort study of 6179 critically ill participants enrolled in 59 ICUs across the USA, we used multivariable logistic regression to determine whether ΔP and Pplat at enrollment were associated with hospital mortality among 1132 mechanically ventilated participants. We stratified analyses by ARDS status. RESULTS: Participants without ARDS (n = 822) had lower average severity of illness scores and lower hospital mortality (27.3% vs. 38.7%; p <  0.001) than those with ARDS (n = 310). Average Pplat (20.6 vs. 23.9 cm H2O; p <  0.001), ΔP (14.3 vs. 16.0 cm H2O; p <  0.001), and positive end-expiratory pressure (6.3 vs. 7.9 cm H2O; p <  0.001) were lower in participants without ARDS, whereas average tidal volumes (7.2 vs. 6.8 mL/kg PBW; p <  0.001) were higher. Among those without ARDS, higher ΔP (adjusted OR = 1.36 per 7 cm H2O, 95% CI 1.14-1.62) and Pplat (adjusted OR = 1.42 per 8 cm H2O, 95% CI 1.17-1.73) were associated with higher mortality. We found similar relationships with mortality among those participants with ARDS. CONCLUSIONS: Higher ΔP and Pplat are associated with increased mortality for participants without ARDS. ΔP may be a viable target for lung-protective ventilation in all mechanically ventilated patients.

Copyright information:

© The Author(s). 2019

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote