Background Radiotherapy (RT) has been shown to stimulate an antitumor immune response in irradiated tumors as well as unirradiated distant sites (abscopal effect). Previous studies have demonstrated a role for the tumor-draining lymph node (LN) in mediating an anti-programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) stimulated antitumor immune response. Here, we investigated whether the LN is also important in mediating a RT alone stimulated abscopal response. Methods We used a subcutaneous modified B16F10 flank tumor model injected bilaterally. Our B16F10 cell line has an inserted viral glycoprotein which facilitated identification of tumor-specific T-cells. RT was directed at one flank tumor alone or one flank tumor and the tumor-draining LN. We evaluated response by tumor growth measurements and flow cytometry of both tumor-infiltrating and LN T-cells. Results We show that local tumor irradiation improves distant tumor control (abscopal effect). Depletion of CD8 + T-cells significantly reduced this abscopal response. We have previously shown, in a chronic lymphocytic choriomeningitis virus (LCMV) infection, that the T-cell proliferative burst following blockade of PD-1/L1 is provided by a 'stem-like' CD8 + T-cell subset which then differentiate into terminally differentiated effectors. These terminally differentiated effectors have the potential to kill virally infected or tumor cells following PD-1/L1 blockade. In the chronic LCMV infection, stem-like CD8 + T-cells were found exclusively in secondary lymphoid organs. Similarly, here we found these cells at high frequencies in the tumor-draining LN, but at low frequencies within the tumor. The effect of RT on this T-cell subset in unknown. Interestingly, tumor irradiation stimulated total CD8 + and stem-like CD8 + T-cell proliferation in the LN. When the LN and the tumor were then targeted with RT, the abscopal effect was reduced, and we found a concomitant reduction in the number of total tumor-specific CD8 + T-cells and stem-like CD8 + T-cells in both the irradiated and unirradiated tumor. Conclusions These correlative results suggest the tumor-draining LN may be an important mediator of the abscopal effect by serving as a stem-like CD8 + T-cell reservoir, a site for stem-like T-cell expansion, and a site from which they can populate the tumor.
Purpose: Stereotactic radiosurgery (SRS) is increasingly used in the management of patients with resected brain metastases (rBMs). A significant complication of this therapy can be radiation necrosis (RN). Despite radiation therapy dose de-escalation and the delivery of several rather than a single dose fraction, rates of RN after SRS for rBMs remain high. We evaluated the dosimetric parameters associated with radiographic RN for rBMs.
Methods and Materials: From 2008 to 2016, 55 rBMs at a single institution that were treated postoperatively with 5-fraction linear accelerator–based SRS (25-35 Gy) with minimum 3 months follow-up were evaluated. For each lesion, variables recorded included radiation therapy dose to normal brain, location and magnitude of hotspots, clinical target volume (CTV), and margin size. Hotspot location was stratified as within the tumor bed alone (CTV) or within the planning target volume (PTV) expansion margin volume (PTV minus CTV). Cumulative incidence with competing risks was used to estimate rates of RN and local recurrence. Optimal cut-points predicting for RN for hotspot magnitude based on location were identified via maximization of the log-rank test statistic.
Results: Median age for all patients was 58.5 years. For all targets, the median CTV was 17.53 cm3, the median expansion margin to PTV was 2 mm, and the median max hotspot was 111%. At 1 year, cumulative incidence of radiographic RN was 18.2%. Univariate analysis showed that max hotspots with a hazard ratio of 3.28 (P = .045), hotspots within the PTV expansion margin with relative magnitudes of 105%, 110%, and 111%, and an absolute dose of 33.5 Gy predicted for RN (P = .029, P = .04, P = .038, and P = .0488, respectively), but hotspots within the CTV did not.
Conclusions: To our knowledge, this is the first study that investigated dosimetric factors that predict for RN after 5-fraction hypofractionated SRS for rBM. Hotspot location and magnitude appear important for predicting RN risk, thus these parameters should be carefully considered during treatment planning.
Mucosal melanoma is a rare subtype of melanoma, accounting for 1.4% of melanoma diagnoses in the United States.1 Median overall survival from time of diagnosis for mucosal melanoma has historically been less than that of cutaneous melanoma in part owing to the frequency of occult presentation and the relative lack of evidence-based guidelines specific to mucosal histology.2 Radiation therapy (RT) in mucosal melanoma has shown promise in certain settings but indications remain poorly defined.3,4 Immune checkpoint inhibitors have shown excellent response rates in metastatic melanoma and are increasingly used for mucosal melanoma; however, most patients will eventually progress. Response patterns are highly variable among patients who respond to immunotherapy.
Although a small group of patients will experience complete response, many patients will have other types of responses such as pseudoprogression (disease enlargement followed by shrinking) or oligoprogression (progression at a limited number of sites).5, 6, 7 Patients with oligoprogression after treatment are of particular interest owing to the possibility of controlling the progressive disease with local therapy and achieving long-term survival. This concept has been demonstrated in retrospective studies of patients with melanoma; however, there have been no studies demonstrating this for patients with mucosal melanoma.5,8
Allele-specific copy number analysis of tumors (ASCAT) assesses copy number variations (CNV) while accounting for aberrant cell fraction and tumor ploidy. We evaluated if ASCAT-assessed CNV are associated with survival outcomes in 56 patients with WHO grade IV gliomas. Tumor data analyzed by Affymetrix OncoScan FFPE Assay yielded the log ratio (R) and B-allele frequency (BAF). Input into ASCAT quantified CNV using the segmentation function to measure copy number inflection points throughout the genome. Quantified CNV was reported as log R and BAF segment counts. Results were confirmed on The Cancer Genome Atlas (TCGA) glioblastoma dataset.
25 (44.6%) patients had MGMT hyper-methylated tumors, 6 (10.7%) were IDH1 mutated. Median follow-up was 36.4 months. Higher log R segment counts were associate with longer progression-free survival (PFS) [hazard ratio (HR) 0.32, p < 0.001], and overall survival (OS) [HR 0.45, p = 0.01], and was an independent predictor of PFS and OS on multivariable analysis. Higher BAF segment counts were linked to longer PFS (HR 0.49, p = 0.022) and OS (HR 0.49, p = 0.052). In the TCGA confirmation cohort, longer 12-month OS was seen in patients with higher BAF segment counts (62.3% vs. 51.9%, p = 0.0129) and higher log R (63.6% vs. 55.2%, p = 0.0696). Genomic CNV may be a novel prognostic biomarker for WHO grade IV glioma patient outcomes.
Inhibitors of apoptosis proteins (IAPs) inhibit the intrinsic and extrinsic cell death pathways, promoting cell survival. Antagonists of these pathways are under study as anti-cancer therapeutics. A high proportion of head and neck squamous cell carcinomas (HNSCCs) have genomic alterations in IAP pathways, resulting in the dysregulation of cell death pathways and rendering them susceptible to IAP antagonist therapy. Preclinical studies suggest IAP antagonists, also known as second mitochondria-derived activator of caspases mimetics, may be effective treatments for HNSCC, especially when combined with radiation. Mechanistic studies have shown both molecular mechanisms (i.e., enhanced cell death) and immune mechanisms (e.g., immunogenic cell death and T-cell activation), underlying the efficacy of these drugs in preclinical models. Phase I/II clinical trials have shown promising results, portending a future where this class of targeted therapies becomes incorporated into the treatment paradigm for head and neck cancers. IAP antagonists have shown great promise for head and neck cancer, especially in combination with radiation therapy. Here, we review recent preclinical and clinical studies on the use of these novel targeted agents for head and neck cancer.
by
Hal Scherz;
Caroline Jansen;
Roshan Prabhu;
Meghana Pagadala;
Prasanthi Chappa;
Subir Goyal;
Chengjing Zhou;
Stewart Neill;
Nataliya Prokhnevska;
Maria Cardenas;
Kimberly Hoang;
Jim Zhong;
Mylin Torres;
Suzanna Logan;
Jeffrey Olson;
Edjah Nduom;
Luke Del Balzo;
Kirtesh Patel;
Stuart Burri;
Anthony Asher;
Scott Wilkinson;
Ross Lake;
Krisitin Higgins;
Pretesh Patel;
Vishal Dhere;
Adam Sowalsky;
Mohammad Khan;
Haydn Kissick;
Zachary Buchwald
The CD8 + T-cell response is prognostic for survival outcomes in several tumor types. However, whether this extends to tumors in the brain, an organ with barriers to T cell entry, remains unclear. Here, we analyzed immune infiltration in 67 brain metastasis (BrM) and found high frequencies of PD1 + TCF1 + stem-like CD8 + T-cells and TCF1- effector-like cells. Importantly, the stem-like cells aggregate with antigen presenting cells in immune niches, and niches were prognostic for local disease control. Standard of care for BrM is resection followed by stereotactic radiosurgery (SRS), so to determine SRS’s impact on the BrM immune response, we examined 76 BrM treated with pre-operative SRS (pSRS). pSRS acutely reduced CD8 + T cells at 3 days. However, CD8 + T cells rebounded by day 6, driven by increased frequency of effector-like cells. This suggests that the immune response in BrM can be regenerated rapidly, likely by the local TCF1 + stem-like population.
Background Anti-PD-1 immune checkpoint blockade is approved for first-line treatment of recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), but few patients respond. Statin drugs (HMG-CoA reductase inhibitors) are associated with superior survival in several cancer types, including HNSCC. Emerging data suggest that manipulation of cholesterol may enhance some aspects of antitumor immunity. Methods We used syngeneic murine models (mouse oral cancer, MOC1 and TC-1) to investigate our hypothesis that a subset of statin drugs would enhance antitumor immunity and delay tumor growth. Results Using an ex vivo coculture assay of murine cancer cells and tumor infiltrating lymphocytes, we discovered that all seven statin drugs inhibited tumor cell proliferation. Simvastatin and lovastatin also enhanced T-cell killing of tumor cells. In mice, daily oral simvastatin or lovastatin enhanced tumor control and extended survival when combined with PD-1 blockade, with rejection of MOC1 tumors in 30% of mice treated with lovastatin plus anti-PD-1. Results from flow cytometry of tumors and tumor-draining lymph nodes suggested T cell activation and shifts from M2 to M1 macrophage predominance as potential mechanisms of combination therapy. Conclusions These results suggest that statins deserve further study as well-tolerated, inexpensive drugs that may enhance responses to PD-1 checkpoint blockade and other immunotherapies for HNSCC.
The human skin hosts millions of bacteria, fungi, archaea, and viruses. These skin microbes play a crucial role in human immunological and physiological functions, as well as the development of skin diseases, including cancer when the balance between skin commensals and pathogens is interrupted. Due to the linkages between inflammation processes and skin microbes, and viral links to skin cancer, new theories have supported the role a dysbiotic skin microbiome plays in the development of cancer and cancer treatment-related skin toxicities. This review focuses on the skin microbiome and its role in cancer treatment-related skin toxicities, particularly from chemotherapy, radiation therapy, and immunotherapy. The current literature found changes in the diversity and abundance of the skin microbiome during cancer treatments such as radiation therapy, including lower diversity of the skin microbiome, an increased Proteobacteria/Firmicutes ratio, and a higher abundance of pathogenic Staphylococcus aureus. These changes may be associated with the development and severity of treatment-related skin toxicities, such as acute radiation dermatitis, hand-foot syndrome in chemotherapy, and immunotherapy-induced rash. Several clinical guidelines have issued potential interventions (e.g., use of topical corticosteroids, phototherapy, and non-pharmaceutical skin care products) to prevent and treat skin toxicities. The effectiveness of these promising interventions in alleviating treatment-related skin toxicities should be further tested among cancer patients.
by
Roshan S Prabhu;
Brandon E Turner;
Anthony L Asher;
Samuel R Marcrom;
John B Fiveash;
Paul M Foreman;
Robert H Press;
Zachary Buchwald;
Walter J Curran;
Kirtesh R Patel;
William G Breen;
Paul D Brown;
Krishan R Jethwa;
Inga S Grills;
Jessica D Arden;
Lauren M Foster;
Matthew A Manning;
Zachary K Vaslow;
Stuart H Burri;
Scott G Soltys
Purpose: Postoperative stereotactic radiosurgery (SRS) is associated with up to 30% risk of subsequent leptomeningeal disease (LMD). Radiographic patterns of LMD (classical sugarcoating [cLMD] vs. nodular [nLMD]) in this setting has been shown to be prognostic. However, the association of these findings with neurologic death (ND) is not well described. Methods and Materials: The records for patients with brain metastases who underwent surgical resection and adjunctive SRS to 1 lesion (SRS to other intact lesions was allowed) and subsequently developed LMD were combined from 7 tertiary care centers. Salvage radiation therapy (RT) for LMD was categorized according to use of whole-brain versus focal cranial RT. Results: The study cohort included 125 patients with known cause of death. The ND rate in these patients was 79%, and the rate in patients who underwent LMD salvage treatment (n = 107) was 76%. Univariate logistic regression demonstrated radiographic pattern of LMD (cLMD vs. nLMD, odds ratio: 2.9; P = .04) and second LMD failure after salvage treatment (odds ratio: 3.9; P = .02) as significantly associated with ND. The ND rate was 86% for cLMD versus 68% for nLMD. Whole-brain RT was used in 95% of patients with cLMD and 52% with nLMD. In the nLMD cohort (n = 58), there was no difference in ND rate based on type of salvage RT (whole-brain RT: 67% vs. focal cranial RT: 68%, P = .92). Conclusions: LMD after surgery and SRS for brain metastases is a clinically significant event with high rates of ND. Classical LMD pattern (vs. nodular) and second LMD failure after salvage treatment were significantly associated with a higher risk of ND. Patients with nLMD treated with salvage focal cranial RT did not have higher ND rates compared with WBRT. Methods to decrease LMD and the subsequent high risk of ND in this setting warrant further investigation.
Phase I clinical trials have established that low-dose, whole-lung radiotherapy (LD-RT) is safe for patients with COVID-19-related pneumonia. By focally dampening cytokine hyperactivation, LD-RT may improve COVID-19 outcomes through immunomodulation.