DNA tubes with prescribed circumferences are appealing for numerous multidisciplinary applications. The DNA single-stranded tiles (SSTs) assembly method has demonstrated an unprecedented capability for programming the circumferences of DNA tubes in a modular fashion. Nevertheless, a distinct set of SSTs is typically required to assemble DNA tube of a specific circumference, with wider tubes requiring higher numbers of tiles of unique sequences, which not only increases the expense and design complexity but also hampers the assembly yield. Herein, we introduce "offset connection" to circumvent such challenges in conventional SST tube assembly. In this new connection scheme, the boundary SST tiles in an SST array are designed to connect in an offset manner. To compensate for the offset, the SST array has to grow wider until the array can close to form a wide tube with a tolerable degree of twist. Using this strategy, we have successfully assembled DNA tubes with prescribed circumferences consisting of 8, 12, 14, 16, 20, 24, 28, 32, 36, 42, 56, or 70 helices from two distinct sets of SSTs composed of 19×4 or 19×14 tiles.
Pyruvate kinase isoform M2 (PKM2) is an enzyme-catalyzing conversion of phosphoenolpyruvate to pyruvate in the glycolysis pathway. It was demonstrated that PKM2 interacts with tyrosine phosphopeptide, and the interaction with the tyrosine phosphopeptide affects the pyruvate kinase activity of PKM2. Our experiments suggest that PKM2 is also an active protein kinase (Gao, X., Wang, H., Yang, J. J., Liu, X., and Liu, Z. R. (2012) Mol. Cell 45, 598-609). We report here that growth signals reciprocally regulate the pyruvate kinase and protein kinase activities of PKM2 by different mechanisms. On the one hand, growth signals induce protein tyrosine phosphorylations. The tyrosine-phosphorylated protein(s) regulates the conversion of pyruvate kinase and protein kinase of PKM2 by directly interacting with PKM2. Binding of the tyrosyl-phosphorylated proteins at the fructose 1,6-bisphosphate-binding site converts the tetrameric PKM2 to a dimer. On the other hand, growth stimulations also lead to PKM2 phosphorylation, which consequently regulates the conversion of protein kinase and pyruvate kinase activities. Growth factor stimulations significantly increase the dimer/tetramer PKM2 ratio in cells and consequently activate the protein kinase activity of PKM2. Our study suggests that the conversion between the pyruvate kinase and protein kinase activities of PKM2 may be an important mechanism mediating the effects of growth signals in promoting cell proliferation.