Background: The oxygen extraction fraction (OEF) indicates the brain’s oxygen consumption and can be estimated by using the quantitative susceptibility mapping (QSM) MRI technique. Recent studies have suggested that OEF alteration following stroke is associated with the viability of at-risk tissue. In the present study, the temporal evolution of OEF in the monkey brain during acute stroke was investigated using QSM. Methods: Ischemic stroke was induced in adult rhesus monkeys (n = 8) with permanent middle cerebral artery occlusion (pMCAO) by using an interventional approach. Diffusion-, T2-, and T2*-weighted images were conducted on day 0, day 2, and day 4 post-stroke using a clinical 3T scanner. Progressive changes in magnetic susceptibility and OEF, along with their correlations with the transverse relaxation rates and diffusion indices, were examined. Results: The magnetic susceptibility and OEF in injured gray matter of the brain significantly increased during the hyperacute phase, and then decreased significantly on day 2 and day 4. Moreover, the temporal changes of OEF in gray matter were moderately correlated with mean diffusivity (MD) (r = 0.52; p = 0.046) from day 0 to day 4. Magnetic susceptibility in white matter progressively increased (from negative values to near zero) during acute stroke, and significant increases were seen on day 2 (p = 0.08) and day 4 (p = 0.003) when white matter was significantly degenerated. However, significant reduction of OEF in white matter was not seen until day 4 post-stroke. Conclusion: The preliminary results demonstrate that QSM-derived OEF is a robust approach to examine the progressive changes of gray matter in the ischemic brain from the hyperacute phase to the subacute phase of stroke. The changes of OEF in gray matter were more prominent than those in white matter following stroke insult. The findings suggest that QSM-derived OEF may provide complementary information for understanding the neuropathology of the brain tissue following stroke and predicting stroke outcomes.
Most characterized protein methylation events encompass arginine and lysine N-methylation, and only a few cases of protein methionine thiomethylation have been reported. Newly discovered oncohistone mutations include lysine-to-methionine substitutions at positions 27 and 36 of histone H3.3. In these instances, the methionine substitution localizes to the active-site pocket of the corresponding histone lysine methyltransferase, thereby inhibiting the respective transmethylation activity. SET domain-containing 3 (SETD3) is a protein (i.e. actin) histidine methyltransferase. Here, we generated an actin variant in which the histidine target of SETD3 was substituted with methionine. As for previously characterized histone SET domain proteins, the methionine substitution substantially (76-fold) increased binding affinity for SETD3 and inhibited SETD3 activity on histidine. Unexpectedly, SETD3 was active on the substituted methionine, generating S-methylmethionine in the context of actin peptide. The ternary structure of SETD3 in complex with the methionine-containing actin peptide at 1.9 Å resolution revealed that the hydrophobic thioether side chain is packed by the aromatic rings of Tyr312 and Trp273, as well as the hydrocarbon side chain of Ile310. Our results suggest that placing methionine properly in the active site-within close proximity to and in line with the incoming methyl group of SAM-would allow some SET domain proteins to selectively methylate methionine in proteins.
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spa-tial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spa-tial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high per-formance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, cus-tomizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amend-ing query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scal-ability to run on commodity clusters. Our comparative experi-ments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
A Chinese rhesus macaque infected with the pathogenic CCR5-tropic clade C simian-human immunodeficiency virus, SHIV-1157ipd3N4, had persistent viremia, depletion of CD4+ T cells to <200 cells/μl, opportunistic infections, coagulopathy and gradual development of bilateral blindness. MRI revealed marked thickening of both optic nerves. Histopathological evaluation showed diffuse cellular infiltration at necropsy, and a focus of infected cells. This is the first report of CNS pathology following chronic infection with an obligate R5 SHIV.
Objective: Alfaxalone has been used increasingly in biomedical research and veterinary medicine of large animals in recent years. However, its effects on the cerebral blood flow (CBF) physiology and intrinsic neuronal activity of anesthetized brains remain poorly understood. Methods: Four healthy adult rhesus monkeys were anesthetized initially with alfaxalone (0.125 mg/kg/min) or ketamine (1.6 mg/kg/min) for 50 min, then administrated with 0.8% isoflurane for 60 min. Heart rates, breathing beats, and blood pressures were continuously monitored. CBF data were collected using pseudo-continuous arterial spin-labeling (pCASL) MRI technique and rsfMRI data were collected using single-shot EPI sequence for each anesthetic. Results: Both the heart rates and mean arterial pressure (MAP) remained more stable during alfaxalone infusion than those during ketamine administration. Alfaxalone reduced CBF substantially compared to ketamine anesthesia (grey matter, 65 ± 22 vs. 179 ± 38 ml/100g/min, p<0.001; white matter, 14 ± 7 vs. 26 ± 6 ml/100g/min, p < 0.05); In addition, CBF increase was seen in all selected cortical and subcortical regions of alfaxalone-pretreated monkey brains during isoflurane exposure, very different from the findings in isoflurane-exposed monkeys pretreated with ketamine. Also, alfaxalone showed suppression effects on functional connectivity of the monkey brain similar to ketamine. Conclusion: Alfaxalone showed strong suppression effects on CBF of the monkey brain.The residual effect of alfaxalone on CBF of isoflurane-exposed brains was evident and monotonous in all the examined brain regions when used as induction agent for inhalational anesthesia. In particular, alfaxalone showed similar suppression effect on intrinsic neuronal activity of the brain in comparison with ketamine. These findings suggest alfaxalone can be a good alternative to veterinary anesthesia in neuroimaging examination of large animal models. However, its effects on CBF and functional connectivity should be considered.
Aging of the optic nerve can result in reduced visual sensitivity or vision loss. Normal optic nerve aging has been investigated previously in tissue specimens but poorly explored in vivo. In the present study, the normal aging of optic nerve was evaluated by diffusion tensor imaging (DTI) in non-human primates. Adult female rhesus monkeys at the ages of 9 to 13 years old (young group, n=8) and 21 to 27 years old (old group, n=7) were studied using parallel-imaging-based DTI on a clinical 3T scanner. Compared to young adults, the old monkeys showed 26% lower fractional anisotropy (P<0.01), and 44% greater radial diffusivity, although the latter difference was of marginal statistical significance (P=0.058). These MRI findings are largely consistent with published results of light and electron microscopic studies of optic nerve aging in macaque monkeys, which indicate a loss of fibers and degenerative changes in myelin sheaths.
Background: Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. Methods: A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. Results: The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. Conclusion: The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.
Heart fiber mechanics can be important predictors in current and future cardiac function. Accurate knowledge of these mechanics could enable cardiologists to provide a diagnosis before conditions progress. Magnetic resonance diffusion tensor imaging (MR-DTI) has been used to determine cardiac fiber orientations. Ultrasound is capable of providing anatomical information in real time, enabling a physician to quickly adjust parameters to optimize image scans. If known fiber orientations from a template heart measured using DTI can be accurately deformed onto a cardiac ultrasound volume, fiber orientations could be estimated for the patient without the need for a costly MR scan while still providing cardiologists valuable information about the heart mechanics. In this study, we apply the method to pig hearts, which are a close representation of human heart anatomy. Experiments from pig hearts show that the registration method achieved an average Dice similarity coefficient (DSC) of 0.819 ± 0.050 between the ultrasound and deformed MR volumes and that the proposed ultrasound-based method is able to estimate the cardiac fiber orientation in pig hearts.
Background
Early adverse experiences, especially those involving disruption of the mother-infant relationship, are detrimental for proper socioemotional development in primates. Humans with histories of childhood maltreatment are at high risk for developing psychopathologies including depression, anxiety, substance abuse, and behavioral disorders. However, the underlying neurodevelopmental alterations are not well understood. Here we used a nonhuman primate animal model of infant maltreatment to study the long-term effects of this early life stress on brain white matter integrity during adolescence, its behavioral correlates, and the relationship with early levels of stress hormones.
Methods
Diffusion tensor imaging and tract based spatial statistics were used to investigate white matter integrity in 9 maltreated and 10 control animals during adolescence. Basal plasma cortisol levels collected at one month of age (when abuse rates were highest) were correlated with white matter integrity in regions with group differences. Total aggression was also measured and correlated with white matter integrity.
Results
We found significant reductions in white matter structural integrity (measured as fractional anisotropy) in the corpus callosum, occipital white matter, external medullary lamina, as well as in the brainstem of adolescent rhesus monkeys that experienced maternal infant maltreatment. In most regions showing fractional anisotropy reductions, opposite effects were detected in radial diffusivity, without changes in axial diffusivity, suggesting that the alterations in tract integrity likely involve reduced myelin. Moreover, in most regions showing reduced white matter integrity, this was associated with elevated plasma cortisol levels early in life, which was significantly higher in maltreated than in control infants. Reduced fractional anisotropy in occipital white matter was also associated with increased social aggression.
Conclusions
These findings highlight the long-term impact of infant maltreatment on brain white matter structural integrity, particularly in tracts involved in visual processing, emotional regulation, and somatosensory and motor integration. They also suggest a relationship between elevations in stress hormones detected in maltreated animals during infancy and long-term brain white matter structural effects.
Keywords: Early life stress; Adolescence; Rhesus monkeys; Diffusion tensor imaging
Human cell transformation is a key step for oncogenic development, which involves multiple pathways; however, the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC), we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung, breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and, OCT4, in turn, stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover, we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a, promotes p63 but suppresses p53 expression, which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and, most likely, also to the iPSC process.