Novel cell-based assays were developed to assess antibody-dependence cellular cytotoxicity (ADCC) antibodies against both vaccine and a representative circulation strain HA and NA proteins for the 2014-15 influenza season. The four assays using target cells stably expressing one of the four proteins worked well. In pre- and post-vaccine sera from 70 participants in a pre-season vaccine trial, we found ADCC antibodies and a rise in ADCC antibody titer against target cells expressing the 4 proteins but a much higher titer for the vaccine than the circulating HA in both pre-and post-vaccine sera. These differences in HA ADCC antibodies were not reflected in differences in HA binding antibodies. Our observations suggested that relatively minor changes on the subtype HA can result in large differences in ADCC activity.
Electron microscopy (EM), cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) are essential techniques used for characterizing basic virus morphology and determining the three-dimensional structure of viruses. Enveloped viruses, which contain an outer lipoprotein coat, constitute the largest group of pathogenic viruses to humans. The purification of enveloped viruses from cell culture presents certain challenges. Specifically, the inclusion of host-membrane-derived vesicles, the complete destruction of the viruses, and the disruption of the internal architecture of individual virus particles. Here, we present a strategy for capturing enveloped viruses on affinity grids (AG) for use in both conventional EM and cryo-EM/ET applications. We examined the utility of AG for the selective capture of human immunodeficiency virus virus-like particles, influenza A, and measles virus. We applied nickel-nitrilotriacetic acid lipid layers in combination with molecular adaptors to selectively adhere the viruses to the AG surface. This further development of the AG method may prove essential for the gentle and selective purification of enveloped viruses directly onto EM grids for ultrastructural analyses.
Understanding the serological responses to COVID-19 vaccination in children with history of MIS-C could inform vaccination recommendations. We prospectively enrolled seven children hospitalized with MIS-C and measured SARS-CoV-2 binding IgG antibodies to spike protein variants longitudinally pre- and post-Pfizer-BioNTech BNT162b2 primary series COVID-19 vaccination. We found that SARS-CoV-2 variant cross-reactive IgG antibodies variably waned following acute MIS-C, but were significantly boosted with vaccination and maintained for up to 3 months. We then compared post-vaccination binding, pseudovirus neutralizing, and functional antibody-dependent cell-mediated cytotoxicity (ADCC) titers to the reference strain (Wuhan-hu-1) and Omicron variant (B.1.1.529) among previously healthy children (n = 16) and children with history of MIS-C (n = 7) or COVID-19 (n = 8). Despite the breadth of binding antibodies elicited by vaccination in all three groups, pseudovirus neutralizing and ADCC titers were significantly reduced to the Omicron variant.
Background. Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. Methods. Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. Results. Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19FG155S compared to RSV-challenged, unvaccinated mice. Conclusions. Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.
Ebolaviruses are highly virulent pathogens that cause Ebola viral disease (EVD). Data from non-human primate (NHP) models and from human survivors of EVD suggest that anti-Ebola antibodies play an integral role in protection. Antibody-dependent cell-mediated cytotoxicity (ADCC) is a potential mechanism through which anti-Ebola antibodies may mediate protection. We developed a robust Ebola-specific ADCC assay for use in ongoing trials of Ebola vaccines. Stable cell lines for inducible Zaire ebolavirus glycoprotein (EBOV GP) expression were developed to provide a uniform source of target cells in the assay, and were combined with an existing human natural killer (NK) cell line as the effector cell. When applied to commercially available anti-EBOV GP monoclonal antibodies, the assay clearly differentiated antibody with high ADCC activity from those with low or no ADCC activity. Anti-EBOV ADCC activity was also detected in plasma samples from rhesus macaques immunized with a candidate Ebola vaccine. The Ebola ADCC assay reported here will be a useful tool in studying the functionality of anti-EBOV GP antibodies elicited by Ebola vaccines in ongoing and future clinical trials.
Zika virus (ZIKV) has become a global public health issue due to its teratogenicity and ability to cause Guillain-Barré syndrome in adults. Although anti-ZIKV envelope protein neutralizing antibodies correlate with protection, the non-neutralizing function of ZIKV antibodies including antibody-dependent cell-mediated cytotoxicity (ADCC) is incompletely understood. To study the role of ADCC antibodies during ZIKV infections, we generated a stably transfected, dual-reporter target cell line with inducible expression of a chimeric ZIKV prM-E protein on the cell surface as the target cell for the assay. By using this assay, nine of ten serum samples from ZIKV-infected patients had >20% ADCC killing of target cells, whereas none of the 12 healthy control sera had >10% ADCC killing. We also observed a time-dependent ADCC response in 2 patients with Zika. This demonstrates that this assay can detect ZIKV ADCC with high sensitivity and specificity, which could be useful for measurement of ADCC responses to ZIKV infection or vaccination.
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NPadjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Envspecific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV).
Since the COVID-19 pandemic, functional non-neutralizing antibody responses to SARS-CoV-2, including antibody-dependent cell-mediated cytotoxicity (ADCC), are poorly understood. We developed an ADCC assay utilizing a stably transfected, dual-reporter target cell line with inducible expression of a SARS-CoV-2 spike protein on the cell surface. Using this assay, we analyzed 61 convalescent serum samples from adults with PCR-confirmed COVID-19 and 15 samples from healthy uninfected controls. We found that 56 of 61 convalescent serum samples induced ADCC killing of SARS-CoV-2 S target cells, whereas none of the 15 healthy controls had detectable ADCC. We then found a modest decline in ADCC titer over a median 3-month follow-up in 21 patients who had serial samples available for analysis. We confirmed that the antibody-dependent target cell lysis was mediated primarily via the NK FcγRIIIa receptor (CD16). This ADCC assay had high sensitivity and specificity for detecting serologic immune responses to SARS-CoV-2.
by
Peng Xiao;
Krista Dienger-Stambaugh;
Xuemin Chen;
Huiling Wei;
Shannon Phan;
Ashley C Beavis;
Karnail Singh;
Nihar Deb R Adhikary;
Pooja Tiwari;
Francois Villinger;
Biao He;
Paul Spearman
The search for a preventive vaccine against HIV infection remains an ongoing challenge, indicating the need for novel approaches. Parainfluenza virus 5 (PIV5) is a paramyxovirus replicating in the upper airways that is not associated with any animal or human pathology. In animal models, PIV5-vectored vaccines have shown protection against influenza, RSV, and other human pathogens. Here, we generated PIV5 vaccines expressing HIV envelope (Env) and SIV Gag and administered them intranasally to macaques, followed by boosting with virus-like particles (VLPs) containing trimeric HIV Env. Moreover, we compared the immune responses generated by PIV5-SHIV prime/VLPs boost regimen in naïve vs a control group in which pre-existing immunity to the PIV5 vector was established. We demonstrate for the first time that intranasal administration of PIV5-based HIV vaccines is safe, well-tolerated and immunogenic, and that boosting with adjuvanted trimeric Env VLPs enhances humoral and cellular immune responses. The PIV5 prime/VLPs boost regimen induced robust and durable systemic and mucosal Env-specific antibody titers with functional activities including ADCC and neutralization. This regimen also induced highly polyfunctional antigen-specific T cell responses. Importantly, we show that diminished responses due to PIV5 pre-existing immunity can be overcome in part with VLP protein boosts. Overall, these results establish that PIV5-based HIV vaccine candidates are promising and warrant further investigation including moving on to primate challenge studies.
by
Mingli Qi;
Janice A. Williams;
Hin Chu;
Xuemin Chen;
Jaang-Jiun Wang;
Lingmei Ding;
Ehiole Akhirome;
Xiaoyun Wen;
Lynne A. Lapierre;
James R. Goldenring;
Paul Spearman
The incorporation of the envelope glycoprotein complex (Env) onto the developing particle is a crucial step in the HIV-1 lifecycle. The long cytoplasmic tail (CT) of Env is required for the incorporation of Env onto HIV particles in T cells and macrophages. Here we identify the Rab11a-FIP1C/RCP protein as an essential cofactor for HIV-1 Env incorporation onto particles in relevant human cells. Depletion of FIP1C reduced Env incorporation in a cytoplasmic tail-dependent manner, and was rescued by replenishment of FIP1C. FIP1C was redistributed out of the endosomal recycling complex to the plasma membrane by wild type Env protein but not by CT-truncated Env. Rab14 was required for HIV-1 Env incorporation, and FIP1C mutants incapable of binding Rab14 failed to rescue Env incorporation. Expression of FIP1C and Rab14 led to an enhancement of Env incorporation, indicating that these trafficking factors are normally limiting for CT-dependent Env incorporation onto particles. These findings support a model for HIV-1 Env incorporation in which specific targeting to the particle assembly microdomain on the plasma membrane is mediated by FIP1C and Rab14.