The intersection of aging and HIV/AIDS is a looming 'epidemic within an epidemic.' This paper reviews how HIV/AIDS and its therapy cause premature aging or contribute mechanistically to HIV-associated non-AIDS illnesses (HANA). Survival with HIV/AIDS has markedly improved by therapy combinations containing nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors, and protease inhibitors (PIs) called HAART (highly active antiretroviral therapy). Because NRTIs and PIs together prevent or attenuate HIV-1 replication, and prolong life, the population of aging patients with HIV/AIDS increases accordingly. However, illnesses frequently associated with aging in the absence of HIV/AIDS appear to occur prematurely in HIV/AIDS patients. Theories that help to explain biological aging include oxidative stress (where mitochondrial oxidative injury exceeds antioxidant defense), chromosome telomere shortening with associated cellular senescence, and accumulation of lamin A precursors (a nuclear envelop protein). Each of these has the potential to be enhanced or caused by HIV/AIDS, antiretroviral therapy, or both. Antiretroviral therapy has been shown to enhance events seen in biological aging. Specifically, antiretroviral NRTIs cause mitochondrial dysfunction, oxidative stress, and mitochondrial DNA defects that resemble features of both HANA and aging. More recent clinical evidence points to telomere shortening caused by NRTI triphosphate-induced inhibition of telomerase, suggesting telomerase reverse transcriptase (TERT) inhibition as being a pathogenetic contributor to premature aging in HIV/AIDS. PIs may also have a role in premature aging in HIV/AIDS as they cause prelamin A accumulation. Overall, toxic side effects of HAART may both resemble and promote events of aging and are worthy of mechanistic studies.
by
Yuuki Shimizu;
Rohini Polavarapu;
Kattri-Liis Eskla;
Chad K. Nicholson;
Christopher A. Koczor;
Rui Wang;
William Lewis;
Sruti Shiva;
David J. Lefer;
John Calvert
Background: Hydrogen sulfide (H 2 S) is an important regulator of mitochondrial bioenergetics, but its role in regulating mitochondrial biogenesis is not well understood. Using both genetic and pharmacological approaches, we sought to determine if H 2 S levels directly influenced cardiac mitochondrial content. Results: Mice deficient in the H 2 S-producing enzyme, cystathionine γ-lyase (CSE KO) displayed diminished cardiac mitochondrial content when compared to wild-type hearts. In contrast, mice overexpressing CSE (CSE Tg) and mice supplemented with the orally active H 2 S-releasing prodrug, SG-1002, displayed enhanced cardiac mitochondrial content. Additional analysis revealed that cardiac H 2 S levels influenced the nuclear localization and transcriptional activity of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) with higher levels having a positive influence and lower levels having a negative influence. Studies aimed at evaluating the underlying mechanisms found that H 2 S required AMP-activated protein kinase (AMPK) to induce PGC1α signaling and mitochondrial biogenesis. Finally, we found that restoring H 2 S levels with SG-1002 in the setting of heart failure increased cardiac mitochondrial content, improved mitochondrial respiration, improved ATP production efficiency, and improved cardiac function. Conclusions: Together, these results suggest that hydrogen sulfide is an important regulator of cardiac mitochondrial content and establishes that exogenous hydrogen sulfide can induce mitochondrial biogenesis via an AMPK-PGC1α signaling cascade.
Introduction
Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue and cell-specific toxicity related to their uptake and subcellular activity which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue specific toxic effects, a limiting factor in the treatment of retroviruses and cancer.
Areas Covered
This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects.
Expert Opinion
Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression, and genetic polymorphisms are required to design better molecules and better therapies.
by
William Lewis;
James J Kohler;
Seyed H. Hosseini;
Chad P. Haase;
William C. Copeland;
Rachelle J. Bienstock;
Tomika Ludaway;
Jamie McNaught;
Rodney Russ;
Tami Stuart;
Robert Santoianni
Design
Nucleoside reverse transcriptase inhibitors (NRTIs) exhibit mitochondrial toxicity. The mitochondrial deoxynucleotide carrier (DNC) transports nucleotide precursors (or phosphorylated NRTIs) into mitochondria for mitochondrial (mt)DNA replication or inhibition of mtDNA replication by NRTIs. Transgenic mice (TG) expressing human DNC targeted to murine myocardium served to define mitochondrial events from NRTIs in vivo and findings were corroborated by biochemical events in vitro.
Methods
Zidovudine (3′-azido-2′,3′-deoxythymidine; ZDV), stavudine (2′, 3′-didehy-dro-2′, 3′-deoxythymidine; d4T), or lamivudine ((−)-2′-deoxy-3′-thiacytidine; 3TC) were administered individually to TGs and wild-type (WT) littermates (35 days) at human doses with drug-free vehicle as control. Left ventricle (LV) mass was defined echocardiographically, mitochondrial ultrastructural defects were identified by electron microscopy, the abundance of cardiac mtDNA was quantified by real time polymerase chain reaction, and mtDNA-encoded polypeptides were quantified.
Results
Untreated TGs exhibited normal LV mass with minor mitochondrial damage. NRTI monotherapy (either d4T or ZDV) increased LV mass in TGs and caused significant mitochondrial destruction. Cardiac mtDNA was depleted in ZDV and d4T-treated TG hearts and mtDNA-encoded polypeptides decreased. Changes were absent in 3TC-treated cohorts. In supportive structural observations from molecular modeling, ZDV demonstrated close contacts with K947 and Y951 in the DNA pol γ active site that were absent in the HIV reverse transcriptase active site.
Conclusions
NRTIs deplete mtDNA and polypeptides, cause mitochondrial structural and functional defects in vivo, follow inhibition kinetics with DNA pol γ in vitro, and are corroborated by molecular models. Disrupted pools of nucleotide precursors and inhibition of DNA pol γ by specific NRTIs are mechanistically important in mitochondrial toxicity.
by
William Lewis;
Brian J. Day;
James J Kohler;
Seyed H. Hosseini;
Sherine S. L. Chan;
Elgin Green;
Chad P. Haase;
Erin Keebaugh;
Robert Long Jr.;
Tomika Ludaway;
Rodney Russ;
Jeffrey Steltzer;
Nina Tioleco;
Robert Santoianni;
William C. Copeland
POLG is the human gene that encodes the catalytic subunit of DNA polymerase γ (Pol γ), the replicase for human mtDNA. A POLG Y955C point mutation causes human chronic progressive external ophthalmoplegia (CPEO), a mitochondrial disease with eye muscle weakness and mtDNA defects. Y955C POLG was targeted transgenically (TG) to the murine heart. Survival was determined in four TG (+/−) lines and wild type (WT) littermates (−/−). Left ventricle (LV) performance (echocardiography and MRI), heart rate (electrocardiography), mtDNA abundance (real time PCR), oxidation of mtDNA (8-OHdG), histopathology and electron microscopy (EM) defined the phenotype.
Cardiac targeted Y955C POLG yielded a molecular signature of CPEO in the heart with cardiomyopathy, mitochondrial oxidative stress, and premature death. Increased LV cavity size and LV mass, bradycardia, decreased mtDNA, increased 8-OHdG, and cardiac histopathological and mitochondrial EM defects supported and defined the phenotype.
This study underscores the pathogenetic role of human mutant POLG and its gene product in mtDNA depletion, mitochondrial oxidative stress and cardiomyopathy as it relates to the genetic defect in CPEO. The transgenic model pathophysiologically links human mutant Pol γ, mtDNA depletion and mitochondrial oxidative stress to the mtDNA replication apparatus and to cardiomyopathy.
Mitochondria produce the energy required for proper cardiac contractile function, and cardiomyocytes that exhibit reduced mitochondrial electron transport will have reduced energy production and decreased contractility. Mitochondrial DNA (mtDNA) encodes the core subunits for the protein complexes of the electron transport chain (ETC). Reduced mtDNA abundance has been linked to reduced ETC and the development of heart failure in genetically engineered mice and in human diseases. Nucleoside reverse transcriptase inhibitors (NRTIs) for HIV/AIDS are used in antiretroviral regimens, which cause decreased mtDNA abundance by inhibiting the mitochondrial polymerase, pol γ as a limiting side effect. We explored consequences of AZT exposure on mtDNA abundance in an established transgenic mouse model (TG) in which a cardiac-targeted mutant form of pol γ displays a dilated cardiomyopathy (DCM) phenotype with increased left ventricle (LV) mass and increased LV end diastolic dimension. TG and wild-type littermate mice received 0.22mg/day AZT or vehicle for 35 days and subsequently analyzed for physiological, histological, and molecular changes. After 35 days, Y955C TGs exhibited cardiac fibrosis independent of AZT. Reduced mtDNA abundance was observed in the Y955C mouse; AZT treatment had no effect on that depletion suggesting that Y955C was sufficient to reduce mtDNA abundance maximally. Isolated mitochondria from AZT-treated Y955C hearts displayed reduced mitochondrial energetic function by oximetric measurement. AZT treatment of the Y955C mutation further reduced basal mitochondrial respiration and state IVo respiration. Together, these results demonstrate that defective pol γ function promotes cardiomyopathy, cardiac fibrosis, mtDNA depletion, and reduced mitochondrial energy production.
by
James J Kohler;
Seyed H Hosseini;
Amy Hoying-Brandt;
Elgin Green;
David M Johnson;
Rodney Russ;
Dung Tran;
C Michael Raper;
Robert Santoianni;
William Lewis
Tenofovir disoproxil fumarate (TDF) is an analog of adenosine monophosphate that inhibits HIV reverse transcriptase in HIV/AIDS. Despite its therapeutic success, renal tubular side effects are reported. The mechanisms and targets of tenofovir toxicity were determined using ‘2 × 2’ factorial protocols, and HIV transgenic (TG) and wild-type (WT) littermate mice with or without TDF (5 weeks). A parallel study used didanosine (ddI) instead of TDF. At termination, heart, kidney, and liver samples were retrieved. Mitochondrial DNA (mtDNA) abundance, and histo- and ultrastructural pathology were analyzed. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. Tenofovir increased mtDNA abundance in TG whole kidneys, but not in their hearts or livers. In contrast, ddI decreased mtDNA abundance in the livers of WTs and TGs, but had no effect on their hearts or kidneys. Histological analyses of kidneys showed no disruption of glomeruli or proximal tubules with TDF or ddI treatments. Ultrastructural changes in renal proximal tubules from TDF-treated TGs included an increased number and irregular shape of mitochondria with sparse fragmented cristae. LCM-captured renal proximal tubules from TGs showed decreased mtDNA abundance with tenofovir. The results indicate that tenofovir targets mitochondrial toxicity on the renal proximal tubule in an AIDS model.
A mitochondrial matrix-specific p53 construct (termed p53–290) in HepG2 cells was utilized to determine the impact of p53 in the mitochondrial matrix following oxidative stress. H2O2 exposure reduced cellular proliferation similarly in both p53–290 and vector cells, and p53–290 cells demonstrating decreased cell viability at 1 mM H2O2 (~85% viable). Mitochondrial DNA (mtDNA) abundance was decreased in a dose-dependent manner in p53–290 cells while no change was observed in vector cells. Oximetric analysis revealed reduced maximal respiration and reserve capacity in p53–290 cells. Our results demonstrate that mitochondrial matrix p53 sensitizes cells to oxidative stress by reducing mtDNA abundance and mitochondrial function.
Tenofovir disoproxil fumarate (TDF) is an oral prodrug and acyclic nucleotide analog of adenosine monophosphate that inhibits HIV-1 (HIV) reverse transcriptase. A growing subset of TDF-treated HIV+ individuals presented with acute renal failure, suggesting tenofovir-associated kidney-specific toxicity. Our previous studies using an HIV transgenic mouse model (TG) demonstrated specific changes in renal proximal tubular mitochondrial DNA (mtDNA) abundance. Nucleosides are regulated in biological systems via transport and metabolism in cellular compartments. In this study, the role(s) of organic anion transporter type 1 (OAT1) and multidrug-resistant protein type 4 (MRP4) in transport and regulation of tenofovir in proximal tubules were assessed. Renal toxicity was assessed in kidney tissues from OAT1 knock-out (KO) or MRP4 KO compared to wild-type (WT, C57BL/6) mice following treatment with TDF (0.11 mg/day), didanosine (ddI, a related adenosine analog, 0.14 mg/day) or vehicle (0.1 M NaOH) daily gavage for 5 wks. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. mtDNA abundance and ultrastructural pathology were analyzed. mtDNA abundance in whole-kidneys from both KO and WT was unchanged regardless of treatment. Renal proximal tubular mtDNA abundance from OAT1 KO also remained unchanged, suggesting prevention of TDF toxicity due to loss of tenofovir transport into proximal tubules. In contrast, renal proximal tubules from MRP4 KO exhibited increased mtDNA abundance following TDF treatment compared to WT littermates, suggesting compensation. Renal proximal tubules from TDF treated WT and MRP4 KO exhibited increased numbers of irregular mitochondria with sparse, fragmented cristae compared to OAT1 KO. Treatment with ddI had a compensatory effect on mtDNA abundance in OAT1 KO but not in MRP4 KO. Both OAT1 and MRP4 have a direct role in transport and efflux of tenofovir, regulating levels of tenofovir in proximal tubules. Disruption of OAT1 activity prevents tenofovir toxicity but loss of MRP4 can lead to increased renal proximal tubular toxicity. These data help explain mechanisms of human TDF renal toxicity.
by
James J Kohler;
Seyed H Hosseini;
Ioan Cucoranu;
Amy Hoying-Brandt;
Elgin Green;
David Johnson;
Bree Wittich;
Jaya Srivastava;
Kristopher Ivey;
Earl J Fields;
Rodney Russ;
C Michael Raper;
Robert Santoianni;
William Lewis
Mitochondrial toxicity results from pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs) for HIV/AIDS. In the heart, this can deplete mitochondrial (mt) DNA and cause cardiac dysfunction (eg, left ventricle hypertrophy, LVH). Four unique transgenic, cardiac-targeted overexpressors (TGs) were generated to determine their individual impact on native mitochondrial biogenesis and effects of NRTI administration on development of mitochondrial toxicity. TGs included cardiac-specific overexpression of native thymidine kinase 2 (TK2), two pathogenic TK2 mutants (H121N and I212N), and a mutant of mtDNA polymerase, pol-γ (Y955C). Each was treated with antiretrovirals (AZT-HAART, 3 or 10 weeks, zidovudine (AZT) + lamivudine (3TC) + indinavir, or vehicle control). Parameters included left ventricle (LV) performance (echocardiography), LV mtDNA abundance (real-time PCR), and mitochondrial fine structure (electron microscopy, EM) as a function of duration of treatment and presence of TG. mtDNA abundance significantly decreased in Y955C TG, increased in TK2 native and I212N TGs, and was unchanged in H121N TGs at 10 weeks regardless of treatment. Y955C and I212N TGs exhibited LVH during growth irrespective of treatment. Y955C TGs exhibited cardiomyopathy (CM) at 3 and 10 weeks irrespective of treatment, whereas H121N and I212N TGs exhibited CM only after 10 weeks AZT-HAART. EM features were consistent with cardiac dysfunction. mtDNA abundance and cardiac functional changes were related to TG expression of mitochondrially related genes, mutations thereof, and NRTIs.