The multicolor and multiplexing capabilities of semiconductor quantum dots (QDs) are most promising for improving the sensitivity and specificity of in vitro molecular and cellular diagnostics. Here, we report the use of multiplexed QDs and wavelength-resolved imaging to detect and characterize a class of low-abundant tumor cells in Hodgkin’s lymphoma. Known as the Hodgkin’s and Reed-Sternberg (HRS) cells, this class of malignant cells is a pathological hallmark in clinical diagnosis, but it comprises only about 1% of the heterogeneous infiltrating cells in lymph node tissues. To overcome this cellular heterogeneity and rarity problem, we have developed multicolor QD–antibody conjugates to simultaneously detect a panel of four protein biomarkers (CD15, CD30, CD45, and Pax5) directly on human tissue biopsies. This multiplexing approach allows rapid detection and differentiation of rare HRS cells from infiltrating immune cells such as T and B lymphocytes. We have also carried out clinical translation studies involving six confirmed Hodgkin’s lymphoma patients, two suspicious lymphoma cases, and two patients with reactive lymph nodes (but not lymphoma). The results indicate that a distinct QD staining pattern (CD15 positive, CD30 positive, CD45 negative, and Pax5 positive) can be used to not only detect Hodgkin’s lymphoma but also differentiate it from benign lymphoid hyperplasia.
Purpose
Currently, there is no clinically validated test for the prediction of response to tubulin-targeting agents in non-small cell lung cancer (NSCLC). Here, we investigated the significance of nuclear expression of the mitotic checkpoint gene checkpoint with forkhead and ringfinger domains (CHFR) as predictor of response and overall survival (OS) with taxane-based first-line chemotherapy in advanced stage NSCLC.
Methods
We studied a cohort of 41 patients (median age 63 years) with advanced NSCLC treated at the Atlanta VAMC between 1999 and 2010. CHFR expression by immunohistochemistry (score 0–4) was correlated with clinical outcome using Chi-Square test and Cox proportional models. A cutoff score of ‘3’ was determined by ROC-analysis for “low” CHFR expression. Results were validated in an additional 20 patients who received taxane based chemotherapy at Emory University Hospital and the Atlanta VAMC.
Results
High expression (score = 4) of CHFR is strongly associated with adverse outcomes: the risk for progressive disease (PD) after first-line chemotherapy with carboplatin-paclitaxel was 52% in patients with CHFR-high vs. only 19% in those with CHFR-low tumors (p=0.033). Median OS was strongly correlated with CHFR expression status (CHFR low: 9.9 months; CHFR high: 6.2 months; p =0.002). After multivariate adjustment, reduced CHFR expression remained a powerful predictor of improved OS (HR 0.24 (95% CI 0.1–0.58, p=0.002). In the validation set, low CHFR expression was associated with higher likelihood of clinical benefit (p=0.03) and improved OS (p=0.038).
Conclusions
CHFR expression is a novel predictive marker of response and OS in NSCLC patients treated with taxane-containing chemotherapy.
PURPOSE: We wished to determine whether virally- induced endothelial tumors are rejected by CD4 and CD8 lymphocytes, and whether there are differences in requirements for costimulation in the rejection of these tumors by lymphocyte subsets.
EXPERIMENTAL DESIGN: We have developed a model of endothelial tumorigenesis through the sequential introduction of SV40 large T antigen and oncogenic H-ras into endothelial cells. These cells (SVR cells) form highly aggressive angiosarcomas in immunocompromised mice, but do not grow in syngeneic C57BL/6 mice. Using both acute blockade with systemic administration of antibodies and mice genetically deficient in the costimulatory molecules CD28, CD40, and CD40L, we have delineated the requirements of costimulation required to reject this virally-induced endothelial tumor.
RESULTS: Control of SVR angiosarcoma is mediated through T lymphocytes, and both CD4 and CD8 lymphocytes are capable of controlling SVR angiosarcoma growth in vivo. Mice genetically deficient in CD28, CD40, and CD40L were able to reject SVR tumors, but depletion of these mice of CD8, but not CD4 cells led to rapid tumor growth. This data suggests that CD4 mediated rejection has a greater dependence of costimulation than CD8 mediated rejection. Surprisingly, acute depletion of costimulatory molecules in immunocompetent C57BL/6 mice led to rapid tumor growth. CONCLUSIONS: Significant differences exist in the immune status of mice acutely depleted of costimulatory molecules versus genetically deficient mice. Our results suggest that acute depletion is more immunosuppressive than genetic depletion. Humans who undergo costimulatory blockade may require periodic surveillance for virally-induced tumors.
Tumor heterogeneity is one of the most important and challenging problems not only in studying the mechanisms of cancer development but also in developing therapeutics to eradicate cancer cells. Here we report the use of multiplexed quantum dots (QDs) and wavelength-resolved spectral imaging for molecular mapping of tumor heterogeneity on human prostate cancer tissue specimens. By using a panel of just four protein biomarkers (E-cadherin, high-molecular-weight cytokeratin, p63, and α-methylacyl CoA racemase), we show that structurally distinct prostate glands and single cancer cells can be detected and characterized within the complex microenvironments of radical prostatectomy and needle biopsy tissue specimens. The results reveal extensive tumor heterogeneity at the molecular, cellular, and architectural levels, allowing direct visualization of human prostate glands undergoing structural transitions from a double layer of basal and luminal cells to a single layer of malignant cells. For clinical diagnostic applications, multiplexed QD mapping provides correlated molecular and morphological information that is not available from traditional tissue staining and molecular profiling methods.