The goal of this study was to identify the contribution of common genetic variants to Down syndrome2associated atrioventricular septal defect, a severe heart abnormality. Compared with the euploid population, infants with Down syndrome, or trisomy 21, have a 2000-fold increased risk of presenting with atrioventricular septal defects. The cause of this increased risk remains elusive. Here we present data from the largest heart study conducted to date on a trisomic background by using a carefully characterized collection of individuals from extreme ends of the phenotypic spectrum. We performed a genome-wide association study using logistic regression analysis on 452 individuals with Down syndrome, consisting of 210 cases with complete atrioventricular septal defects and 242 controls with structurally normal hearts. No individual variant achieved genome-wide significance. We identified four disomic regions (1p36.3, 5p15.31, 8q22.3, and 17q22) and two trisomic regions on chromosome 21 (around PDXK and KCNJ6 genes) that merit further investigation in large replication studies. Our data show that a few common genetic variants of large effect size (odds ratio >2.0) do not account for the elevated risk of Down syndrome2associated atrioventricular septal defects. Instead, multiple variants of low-to-moderate effect sizes may contribute to this elevated risk, highlighting the complex genetic architecture of atrioventricular septal defects even in the highly susceptible Down syndrome population.
Summary
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a recently recognized neurodegenerative disorder in fragile X premutation carriers with FMR1 alleles containing 55-200 CGG repeats. Previously, we developed a Drosophila model of FXTAS and demonstrated that transcribed premutation repeats alone are sufficient to cause neurodegeneration, suggesting that rCGG repeat-binding proteins (RBPs) may be sequestered from their normal function by rCGG binding. Here we identify Pur α and hnRNP A2/B1 as RBPs. We show that Pur α and rCGG repeats interact in a sequence-specific fashion that is conserved between mammals and Drosophila. Overexpression of Pur α in Drosophila could suppress rCGG-mediated neurodegeneration in a dose-dependent manner. Furthermore, Pur α is also present in the inclusions of FXTAS patient brains. These findings support the disease mechanism of FXTAS of rCGG repeat sequestration of specific RBPs, leading to neuronal cell death, and implicate that Pur α plays important role in the pathogenesis of FXTAS.
This study examined the contribution of the Apgar score at 1 and 5 min after birth to later cognitive functioning in 168 individuals with Down syndrome who were between 6 and 25 years of age at time of cognitive testing. Our results showed that a lower Apgar score at 1 min was related to a worse performance in later cognitive measures of receptive vocabulary, verbal comprehension and production, visual memory and working memory. Results also showed that a lower Apgar score at 5 min was only related to worse later outcomes of verbal comprehension and production and auditory working memory. Our findings suggest a need for future studies investigating how specific perinatal events reflected in the Apgar score are linked to later cognitive functioning in individuals with Down syndrome.
by
Amy Talboy;
James A Hendrix;
David C Airey;
Angela Britton;
Anna D Burke;
George T Capone;
Ronelyn Chavez;
Jacqueline Chen;
Brian Chicoine;
Alberto CS Costa;
Jeffrey L Dage;
Eric Doran;
Anna Esbensen;
Casey L Evans;
Kelley M Faber;
Tatiana M Foroud;
Sarah Hart;
Kelsey Haugen;
Elizabeth Head;
Suzanne Hendrix;
Hampus Hillerstrom;
Priya S Kishnani;
Kavita Krell;
Duvia Lara Ledesma;
Florence Lai;
Ira Lott;
Cesar Ochoa-Lubinoff;
Jennifer Mason;
Jessie Nicodemus-Johnson;
Nicholas Kyle Proctor;
Margaret B Pulsifer;
Carolyn Revta;
Diana H Rosas;
Jennifer Rosser;
Stephanie Santoro;
Kim Schafer;
Thomas Scheidemantel;
Frederick Schmitt;
Brian G Skotko;
Melissa R Stasko;
Amy Torres;
Kristi Wilmes;
Jason Woodward;
Jennifer A Zimmer;
Howard H Feldman;
William Mobley
With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer’s disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examina-tion (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at ap-proximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology.
Purpose:The goal of this study was to identify the contribution of large copy-number variants to Down syndrome-associated atrioventricular septal defects, the risk for which in the trisomic population is 2,000-fold more as compared with that of the general disomic population.
Methods:Genome-wide copy-number variant analysis was performed on 452 individuals with Down syndrome (210 cases with complete atrioventricular septal defects; 242 controls with structurally normal hearts) using Affymetrix SNP 6.0 arrays, making this the largest heart study conducted to date on a trisomic background.
Results:Large, common copy-number variants with substantial effect sizes (OR > 2.0) do not account for the increased risk observed in Down syndrome-associated atrioventricular septal defects. By contrast, cases had a greater burden of large, rare deletions (P < 0.01) and intersected more genes (P < 0.007) as compared with controls. We also observed a suggestive enrichment of deletions intersecting ciliome genes in cases as compared with controls.
Conclusion:Our data provide strong evidence that large, rare deletions increase the risk of Down syndrome-associated atrioventricular septal defects, whereas large, common copy-number variants do not appear to increase the risk of Down syndrome-associated atrioventricular septal defects. The genetic architecture of atrioventricular septal defects is complex and multifactorial in nature.Genet Med 17 7, 554-560.
One in five people with Down syndrome (DS) are born with an atrioventricular septal defect (AVSD), an incidence 2000 times higher than in the euploid population. The genetic loci that contribute to this risk are poorly understood. In this study, we tested two hypotheses: (1) individuals with DS carrying chromosome 21 copy number variants (CNVs) that interrupt exons may be protected from AVSD, because these CNVs return AVSD susceptibility loci back to disomy, and (2) individuals with DS carrying chromosome 21 genes spanned by microduplications are at greater risk for AVSD because these microduplications boost the dosage of AVSD susceptibility loci beyond a tolerable threshold.We tested 198 case individuals with DS+AVSD, and 211 control individuals with DS and a normal heart, using a custom microarray with dense probes tiled on chromosome 21 for array CGH (aCGH). We found that neither an individual chromosome 21 CNV nor any individual gene intersected by a CNV was associated with AVSD in DS. Burden analyses revealed that African American controls had more bases covered by rare deletions than did African American cases. Inversely, we found that Caucasian cases had more genes intersected by rare duplications than did Caucasian controls. We also showed that previously DS+AVSD (DS and a complete AVSD)-associated common CNVs on chromosome 21 failed to replicate. This research adds to the swell of evidence indicating that DS-associated AVSD is similarly heterogeneous, as is AVSD in the euploid population.
Attention-deficit/hyperactivity disorder is frequently reported in individuals with Down syndrome, with considerable variation in the expression and severity of the symptoms. Despite growing evidence that gestational age predicts later symptoms of attention-deficit/hyperactivity disorder in the euploid population, this has not been studied in down syndrome. The current study is designed to investigate the influence of gestational age in later symptoms of attention-deficit/hyperactivity disorder in 105 individuals (49 males and 56 females; aged 6–18 years) with Down syndrome who were born at or after 35 weeks gestation. Maternal age at birth, maternal level of education, household income, as well as sex, chronological age, and cognitive level of the participant with Down syndrome were considered in our analysis. Results from this study show that gestational age is related to inattentive and hyperactive/impulsive symptoms in children and adolescents with Down syndrome. Therefore, gestational age should be addressed when considering symptoms of attention-deficit/hyperactivity disorder, as it may have implications for early interventions. More attention is needed toward the advancement of care and follow-up for infants with down syndrome who are born even late preterm or early term.