Hypotension during kidney transplantation can be common. Vasopressor use during these procedures is often avoided, with a fear of decreasing renal perfusion in the transplanted kidney. However, adequate perfusion for the rest of the body is also necessary, and given that these patients often have underlying hypertension or other comorbid conditions, an appropriate mean arterial pressure (MAP) has to be maintained. Intramuscular injections of ephedrine have been studied in the anesthesiology literature in a variety of case types, and it is seen as a safe and effective method to boost MAP. We present a case series of three patients who underwent renal transplantation and who received an intramuscular injection of ephedrine for hypotension control. The medication worked well for increasing blood pressures without apparent side effects. All three patients were followed for more than one year, and all patients had good graft function at the end of that time period. This series shows that while further research is necessary in this arena, intramuscular ephedrine may have a place in the management of persistent hypotension in the operating room during kidney transplantation.
by
Suman Shrestha;
James Bates;
Qi Liu;
Susan Smith;
Kevin C Oeffinger;
Eric J Chow;
Aashish C Gupta;
Constance A Owens;
Louis S Constine;
Bradford S Hoppe;
Wendy M Leisenring;
Ying Qiao;
Rita E Weathers;
Laurence E Court;
Chelsea C Pinnix;
Stephen F Kry;
Daniel A Mulrooney;
Gregory T Armstrong;
Yutaka Yasui;
Rebecca M Howell
Background and purpose: We previously evaluated late cardiac disease in long-term survivors in the Childhood Cancer Survivor Study (CCSS) based on heart radiation therapy (RT) doses estimated from an age-scaled phantom with a simple atlas-based heart model (HAtlas). We enhanced our phantom with a high-resolution CT-based anatomically realistic and validated age-scalable cardiac model (HHybrid). We aimed to evaluate how this update would impact our prior estimates of RT-related late cardiac disease risk in the CCSS cohort. Methods: We evaluated 24,214 survivors from the CCSS diagnosed from 1970 to 1999. RT fields were reconstructed on an age-scaled phantom with HHybrid and mean heart dose (Dm), percent volume receiving ≥ 20 Gy (V20) and ≥ 5 Gy with V20 = 0 (V5,V20=0%) were calculated. We reevaluated cumulative incidences and adjusted relative rates of grade 3–5 Common Terminology Criteria for Adverse Events outcomes for any cardiac disease, coronary artery disease (CAD), and heart failure (HF) in association with Dm, V20, and V5,V20=0% (as categorical variables). Dose-response relationships were evaluated using piecewise-exponential models, adjusting for attained age, sex, cancer diagnosis age, race/ethnicity, time-dependent smoking history, diagnosis year, and chemotherapy exposure and doses. For relative rates, Dm was also considered as a continuous variable. Results: Consistent with previous findings with HAtlas, reevaluation using HHybrid dosimetry found that, Dm ≥ 10 Gy, V20 ≥ 0.1%, and V5,V20=0% ≥ 50% were all associated with increased cumulative incidences and relative rates for any cardiac disease, CAD, and HF. While updated risk estimates were consistent with previous estimates overall without statistically significant changes, there were some important and significant (P < 0.05) increases in risk with updated dosimetry for Dm in the category of 20 to 29.9 Gy and V20 in the category of 30% to 79.9%. When changes in the linear dose–response relationship for Dm were assessed, the slopes of the dose response were steeper (P < 0.001) with updated dosimetry. Changes were primarily observed among individuals with chest-directed RT with prescribed doses ≥ 20 Gy. Conclusion: These findings present a methodological advancement in heart RT dosimetry with improved estimates of RT-related late cardiac disease risk. While results are broadly consistent with our prior study, we report that, with updated cardiac dosimetry, risks of cardiac disease are significantly higher in two dose and volume categories and slopes of the Dm-specific RT-response relationships are steeper. These data support the use of contemporary RT to achieve lower heart doses for pediatric patients, particularly those requiring chest-directed RT.
by
Suman Shrestha;
Aashish C Gupta;
James Bates;
Choonsik Lee;
Constance A Owens;
Bradford S Hoppe;
Louis S Constine;
Susan Smith;
Ying Qiao;
Rita E Weathers;
Yukata Yasui;
Laurence E Court;
Arnold C Paulino;
Chelsea Pinnix;
Stephen F Kry;
David S Followill;
Gregory T Armstrong;
Rebecca M Howell
Background and Purpose: Radiation therapy is a risk factor for late cardiac disease in childhood cancer survivors. Several pediatric cohort studies have established whole heart dose and dose–volume response models. Emerging data suggest that dose to cardiac substructures may be more predictive than whole heart metrics. In order to develop substructure dose-response models, the heart model previously used for pediatric cohort dosimetry needed enhancement and substructure delineation. Methods: To enhance our heart model, we combined the age-scalable capability of our computational phantom with the anatomically-delineated (with substructures) heart models from an international humanoid phantom series. We examined cardiac volume similarity/overlap between registered age-scaled phantoms (1, 5, 10, and 15 years) with the enhanced heart model and the reference phantoms of the same age; dice similarity coefficient (DSC) and overlap coefficient (OC) were calculated for each matched pair. To assess the accuracy of our enhanced heart model, we compared doses from computed tomography-based planning (ground truth) with reconstructed heart doses. We also compared doses calculated with the prior and enhanced heart models for a cohort of nearly 5000 childhood cancer survivors. Results: We developed a realistic cardiac model with 14-substructures, scalable across a broad age range (1–15 years); average DSC and OC were 0.84 ± 0.05 and 0.90 ± 0.05, respectively. The average percent difference between reconstructed and ground truth mean heart doses was 4.2%. In the cohort dosimetry analysis, dose and dose-volume metrics were approximately 10% lower on average when the enhanced heart model was used for dose reconstructions. Conclusion: We successfully developed and validated an anatomically realistic age-scalable cardiac model that can be used to establish substructure dose-response models for late cardiac disease in childhood cancer survivor cohorts.
Our understanding of innate immune responses in human rectal mucosal tissues (RM) and their contributions to promoting or restricting HIV transmission is limited. We defined the RM composition of innate and innate-like cell subsets, including plasmacytoid dendritic cells; CD1c + myeloid DCs; neutrophils; macrophages; natural killer cells (NK); Marginal Zone-like B cells (MZB); γδ T cells; and mucosal-associated invariant T cells in RM from 69 HIV-negative men by flow cytometry. Associations between these cell subsets and HIV-1 replication in ex vivo RM explant challenge experiments revealed an inverse correlation between RM-NK and p24 production, in contrast to a positive association between RM-MZB and HIV replication. Comparison of RM and blood-derived MZB and NK illustrated qualitative and quantitative differences between tissue compartments. Additionally, 22 soluble molecules were measured in a subset of explant cultures (n = 26). Higher production of IL-17A, IFN-γ, IL-10, IP-10, GM-CSF, sFasL, Granzyme A, Granzyme B, Granulysin, and Perforin following infection positively correlated with HIV replication. These data show novel associations between MZB and NK cells and p24 production in RM and underscore the importance of inflammatory cytokines in mucosal HIV infection, demonstrating the likely critical role these innate immune responses play in early mucosal HIV replication in humans.
by
Stephanie A. Kovalchik;
Cecile M. Ronckers;
Lene H. S. Veiga;
Alice J. Sigurdson;
Peter D. Inskip;
Florent de Vathaire;
Charles A. Sklar;
Sarah S. Donaldson;
Harald Anderson;
Parveen Bhatti;
Sue Hammond;
Wendy M. Leisenring;
Ann Mertens;
Susan Smith;
Marilyn Stovall;
Margaret A. Tucker;
Rita E. Weathers;
Leslie L. Robison;
Ruth M. Pfeiffer
Purpose: We developed three absolute risk models for second primary thyroid cancer to assist with long-term clinical monitoring of childhood cancer survivors.
Patients and Methods: We used data from the Childhood Cancer Survivor Study (CCSS) and two nested case-control studies (Nordic CCSS; Late Effects Study Group). Model M1 included self-reported risk factors, model M2 added basic radiation and chemotherapy treatment information abstracted from medical records, and model M3 refined M2 by incorporating reconstructed radiation absorbed dose to the thyroid. All models were validated in an independent cohort of French childhood cancer survivors.
Results: M1 included birth year, initial cancer type, age at diagnosis, sex, and past thyroid nodule diagnosis. M2 added radiation (yes/no), radiation to the neck (yes/no), and alkylating agent (yes/no). Past thyroid nodule was consistently the strongest risk factor (M1 relative risk [RR], 10.8; M2 RR, 6.8; M3 RR, 8.2). In the validation cohort, 20-year absolute risk predictions for second primary thyroid cancer ranged from 0.04% to 7.4% for M2. Expected events agreed well with observed events for each model, indicating good calibration. All models had good discriminatory ability (M1 area under the receiver operating characteristics curve [AUC], 0.71; 95% CI, 0.64 to 0.77; M2 AUC, 0.80; 95% CI, 0.73 to 0.86; M3 AUC, 0.75; 95% CI, 0.69 to 0.82).
Conclusion: We developed and validated three absolute risk models for second primary thyroid cancer. Model M2, with basic prior treatment information, could be useful for monitoring thyroid cancer risk in childhood cancer survivors.
by
Gabriel Chodick;
Alice J. Sigurdson;
Ruth A. Kleinerman;
Charles A. Sklar;
Wendy Leisenring;
Ann Mertens;
Marilyn Stovall;
Susan Smith;
Rita E. Weathers;
Lene H. S. Veiga;
Leslie L. Robison;
Peter D. Inskip
With therapeutic successes and improved survival after a cancer diagnosis in childhood, increasing numbers of cancer survivors are at risk of subsequent treatment-related morbidities, including cataracts. While it is well known that the lens of the eye is one of the most radiosensitive tissues in the human body, the risks associated with radiation doses less than 2 Gy are less understood, as are the long- and short-term cataract risks from exposure to ionizing radiation at a young age. In this study, we followed 13,902 five-year survivors of childhood cancer in the Childhood Cancer Survivor Study cohort an average of 21.4 years from the date of first cancer diagnosis. For patients receiving radiotherapy, lens dose (mean: 2.2 Gy; range: 0-66 Gy) was estimated based on radiotherapy records. We used unconditional multivariable logistic regression models to evaluate prevalence of self-reported cataract in relationship to cumulative radiation dose both at five years after the initial cancer diagnosis and at the end of follow-up. We modeled the radiation effect in terms of the excess odds ratio (EOR) per Gy. We also analyzed cataract incidence starting from five years after initial cancer diagnosis to the end of follow-up using Cox regression. A total of 483 (3.5%) cataract cases were identified, including 200 (1.4%) diagnosed during the first five years of follow-up. In a multivariable logistic regression model, cataract prevalence at the end of follow-up was positively associated with lens dose in a manner consistent with a linear dose-response relationship (EOR per Gy = 0.92; 95% CI: 0.65-1.20). The odds ratio for doses between 0.5 and 1.5 Gy was elevated significantly relative to doses <0.5 Gy (OR = 2.2; 95% CI: 1.3-3.7). The results from this study indicate a strong association between ocular exposure to ionizing radiation and long-term risk of pre-senile cataract. The risk of cataract increased with increasing exposure, beginning at lens doses as low as 0.5 Gy. Our findings are in agreement with a growing body of evidence of an elevated risk for lens opacities in populations exposed to doses of ionizing radiation below the previously suggested threshold level of 2 Gy.