by
Steven W Pipe;
Cédric Hermans;
Meera Chitlur;
Manuel Carcao;
Giancarlo Castaman;
Joanna A Davis;
Jonathan Ducore;
Miguel Escobar;
Janna Journeycake;
Osman Khan;
Johnny Mahlangu;
Shannon Meeks;
Ismail H Mitha;
Claude Négrier;
Ulrike Nowak‐Göttl;
Michael Recht;
Tammuella Chrisentery-Singleton;
Oleksandra Stasyshyn;
Kateryna V Vilchevska;
Laura Villarreal Martinez;
Michael Wang;
Jerzy Windyga;
Guy Young;
Allan W Alexander;
Daniel Bonzo;
Christopher Macie;
Ian S Mitchell;
Evelyne Sauty;
Thomas A Wilkinson;
Amy D Shapiro
Introduction: Eptacog beta is a new recombinant activated human factor VII bypassing agent approved in the United States for the treatment and control of bleeding in patients with haemophilia A or B with inhibitors 12 years of age or older. Aim: To prospectively assess in a phase 3 clinical trial (PERSEPT 2) eptacog beta efficacy and safety for treatment of bleeding in children <12 years of age with haemophilia A or B with inhibitors. Methods: Using a randomised crossover design, subjects received initial doses of 75 or 225 μg/kg eptacog beta followed by 75 μg/kg dosing at predefined intervals (as determined by clinical response) to treat bleeding episodes (BEs). Treatment success criteria included a haemostasis evaluation of ‘excellent’ or ‘good’ without use of additional eptacog beta, alternative haemostatic agent or blood product, and no increase in pain following the first ‘excellent’ or ‘good’ assessment. Results: Treatment success proportions in 25 subjects (1–11 years) who experienced 546 mild or moderate BEs were 65% in the 75 μg/kg initial dose regimen (IDR) and 60% in the 225 μg/kg IDR 12 h following initial eptacog beta infusion. By 24 h, the treatment success proportions were 97% for the 75 μg/kg IDR and 98% for the 225 μg/kg IDR. No thrombotic events, allergic reactions, neutralising antibodies or treatment-related adverse events were reported. Conclusion: Both 75 and 225 μg/kg eptacog beta IDRs provided safe and effective treatment and control of bleeding in children <12 years of age.
The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323–339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323–339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323–339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.
Hemophilia A is a rare congenital bleeding disorder caused by a deficiency of functionally active coagulation factor VIII (FVIII). Most patients with the severe form of the disease require FVIII replacement therapies, which are often associated with the development of neutralizing antibodies against FVIII. Why some patients develop neutralizing antibodies while others do not is not fully understood. Previously, we could demonstrate that the analysis of FVIII-induced gene expression signatures in peripheral blood mononuclear cells (PBMC) obtained from patients exposed to FVIII replacement therapies provides novel insights into underlying immune mechanisms regulating the development of different populations of FVIII-specific antibodies. The aim of the study described in this manuscript was the development of training and qualification test procedures to enable local operators in different European and US clinical Hemophilia Treatment Centers (HTC) to produce reliable and valid data for antigen-induced gene expression signatures in PBMC obtained from small blood volumes. For this purpose, we used the model antigen Cytomegalovirus (CMV) phosphoprotein (pp) 65. We trained and qualified 39 local HTC operators from 15 clinical sites in Europe and the US, of whom 31 operators passed the qualification at first attempt, and eight operators passed at the second attempt.
by
Claude Négrier;
Johannes Oldenburg;
Gili Kenet;
Shannon Meeks;
Jean-Claude Bordet;
Jens Müller;
Sandra Le Quellec;
Peter L Turecek;
Nikola Tripkovic;
Yesim Dargaud
Background: Neutralizing factor VIII (FVIII) antibodies are a major complication in hemophilia A. Antihemophilic factor VIII (recombinant), porcine sequence (rpFVIII; susoctocog alfa; Baxalta US Inc., a Takeda company) has low cross-reactivity to anti-human FVIII antibodies and can provide functional FVIII activity in the presence of FVIII inhibitors. Objectives: Evaluate in vitro thrombin generation and clot formation responses to rpFVIII in blood from patients with congenital hemophilia A. Methods: In this multicenter study, blood was obtained for in vitro analyses that included human and porcine FVIII inhibitors, low <5 Bethesda units (BU)/ml or high ≥5 BU/ml titer (Nijmegen-modified Bethesda assay); thrombin generation assay (TGA), clot viscoelasticity (thromboelastography), fibrin clot structure analysis (scanning electron microscopy), and epitope mapping. Results: Blood samples were from 20 patients with congenital hemophilia A (FVIII activity <1%, mean [range] inhibitor titers: anti-human FVIII, 14 [1–427] BU/ml [n = 13 high, n = 6 low, n = 1 data unavailable]); anti-porcine FVIII, 12 (0–886) BU/ml (n = 11 high, n = 8 low, n = 1 data unavailable). Porcine inhibitor titer and TGA response measured by endogenous thrombin potential showed an inverse correlation (2.7–10.8 U/ml rpFVIII Spearman correlation coefficient: −0.594 to −0.773; p < 0.01). Clot structures in low anti-porcine inhibitor titer plasmas were similar to those in noninhibitor plasma. Conclusions: Recombinant porcine factor VIII demonstrated a dose-dependent correction of thrombin generation and clot formation in vitro, dependent on the anti-porcine FVIII inhibitor titer. Procoagulant responses to rpFVIII occurred in plasma containing FVIII inhibitors.
Optimization of a protein's pharmaceutical properties is usually carried out by rational design and/or directed evolution. Here we test an alternative approach based on ancestral sequence reconstruction. Using available genomic sequence data on coagulation factor VIII and predictive models of molecular evolution, we engineer protein variants with improved activity, stability, and biosynthesis potential and reduced inhibition by anti-drug antibodies. In principle, this approach can be applied to any protein drug based on a conserved gene sequence.
by
Bhavya S. Doshi;
Jyoti Rana;
Giancarlo Castaman;
Mostafa A. Shaheen;
Radoslaw Kaczmarek;
John S. S. Butterfield;
Shannon Meeks;
Cindy Leissinger;
Moanaro Biswas;
Valder R. Arruda
Inhibitors of factor VIII (FVIII) remain the most challenging complication of FVIII protein replacement therapy in hemophilia A (HA). Understanding the mechanisms that guide FVIII-specific B cell development could help identify therapeutic targets. The B cell–activating factor (BAFF) cytokine family is a key regulator of B cell differentiation in normal homeostasis and immune disorders. Thus, we used patient samples and mouse models to investigate the potential role of BAFF in modulating FVIII inhibitors. BAFF levels were elevated in pediatric and adult HA inhibitor patients and decreased to levels similar to those of noninhibitor controls after successful immune tolerance induction (ITI). Moreover, elevations in BAFF levels were seen in patients who failed to achieve FVIII tolerance with anti-CD20 antibody–mediated B cell depletion. In naive HA mice, prophylactic anti-BAFF antibody therapy prior to FVIII immunization prevented inhibitor formation and this tolerance was maintained despite FVIII exposure after immune reconstitution. In preimmunized HA mice, combination therapy with anti-CD20 and anti-BAFF antibodies dramatically reduced FVIII inhibitors via inhibition of FVIII-specific plasma cells. Our data suggest that BAFF may regulate the generation and maintenance of FVIII inhibitors and/or anti-FVIII B cells. Finally, anti-CD20/anti-BAFF combination therapy may be clinically useful for ITI.
Humoral immunity to factor VIII (FVIII) represents a significant challenge for the treatment of patients with hemophilia A. Current paradigms indicate that neutralizing antibodies against FVIII (inhibitors) occur through a classical CD4 T cell, germinal center (GC) dependent process. However, clinical observations suggest that the nature of the immune response to FVIII may differ between patients. While some patients produce persistent low or high inhibitor titers, others generate a transient response. Moreover, FVIII reactive memory B cells are only detectable in some patients with sustained inhibitor titers. The determinants regulating the type of immune response a patient develops, let alone how the immune response differs in these patients remains incompletely understood. One hypothesis is that polymorphisms within immunoregulatory genes alter the underlying immune response to FVIII, and thereby the inhibitor response. Consistent with this, studies report that inhibitor titers to FVIII differ in animals with the same F8 pathogenic variant but completely distinct backgrounds; though, how these genetic disparities affect the immune response to FVIII remains to be investigated. Given this, we sought to mechanistically dissect how genetics impact the underlying immune response to FVIII. In particular, as the risk of producing inhibitors is weakly associated with differences in HLA, we hypothesized that genetic factors other than HLA influence the immune response to FVIII and downstream inhibitor formation. Our data demonstrate that FVIII deficient mice encoding the same MHC and F8 variant produce disparate inhibitor titers, and that the type of inhibitor response formed associates with the ability to generate GCs. Interestingly, the formation of antibodies through a GC or non-GC pathway does not appear to be due to differences in CD4 T cell immunity, as the CD4 T cell response to an immunodominant epitope in FVIII was similar in these mice. These results indicate that genetics can impact the process by which inhibitors develop and may in part explain the apparent propensity of patients to form distinct inhibitor responses. Moreover, these data highlight an underappreciated immunological pathway of humoral immunity to FVIII and lay the groundwork for identification of biomarkers for the development of approaches to tolerize against FVIII.
Although the primary reason for recombinant factor VIII Fc fusion protein (rFVIIIFc) development was to reduce treatment burden associated with routine prophylaxis, new evidence suggests additional benefits of Fc fusion technology in the treatment of people with haemophilia A. Preclinical research has been utilized to characterize the potential immunomodulatory properties of rFVIIIFc, including an ability to reduce inflammation and induce tolerance to factor VIII.
This has since been expanded into clinical research in immune tolerance induction (ITI) with rFVIIIFc, results of which suggest the potential for rapid tolerization in first-time ITI patients and therapeutic benefit in patients undergoing rescue ITI. The potential for improved joint health through the anti-inflammatory properties of rFVIIIFc has also been suggested. In addition, a new avenue of research into the role of rFVIIIFc in promoting bone health in patients with haemophilia A, potentially through reduced osteoclast formation, has yielded encouraging results that support further study. This review summarizes the existing preclinical and clinical studies of immunomodulation and tolerization with rFVIIIFc, as well as studies in joint and bone health, to elucidate the potential benefits of rFVIIIFc in haemophilia A beyond the extension of factor VIII half-life.
Background: The majority of patients with hemophilia A with inhibitors who undergo immune tolerance induction (ITI) achieve successful tolerance and transition to factor VIII (FVIII) prophylaxis. A portion of these patients have switched to emicizumab for bleeding prevention. However, the risk of inhibitor relapse on emicizumab is unclear. Objective: To evaluate the inhibitor status of patients with hemophilia A and inhibitors who achieved successful/partial tolerance after ITI and transitioned from FVIII prophylaxis to emicizumab. Methods: This is a single-institution, retrospective review of pediatric patients with severe hemophilia A who have completed ITI with FVIII and switched to emicizumab. Results/Conclusions: Seven successfully tolerized and five partially tolerized patients were identified. Three patients continued intermittent FVIII infusions on emicizumab at 50-70 IU/kg twice weekly, once weekly, or every other week due to concerns for inhibitor relapse or loss of recent FVIII tolerance by the treating provider. Eleven of 12 patients (92%) maintained negative inhibitor titers at a mean follow-up of 14.2 ± 6.1 months. One individual had an inhibitor relapse with a peak titer of 2.5 BU/mL. Five of the 11 patients (45%) with negative inhibitor titers had detectable nonneutralizing anti-FVIII IgG4 antibodies, but none of the patients had detectable IgG1 antibodies. There were no inhibitor recurrences in a subset of six patients after FVIII re-exposure for bleeding events or surgery. Given that the presence of an inhibitor significantly impacts factor product choice for bleeding management, ongoing inhibitor monitoring in tolerized patients with hemophilia A who transition to emicizumab is strongly recommended.
by
Caileen M. Brison;
Steven M. Mullen;
Michelle E. Wuerth;
Kira Podolsky;
Matthew Cook;
Jacob A. Herman;
Justin D. Walter;
Shannon Meeks;
P. Clint Spiegel
The factor VIII C2 domain is essential for binding to activated platelet surfaces as well as the cofactor activity of factor VIII in blood coagulation. Inhibitory antibodies against the C2 domain commonly develop following factor VIII replacement therapy for hemophilia A patients, or they may spontaneously arise in cases of acquired hemophilia. Porcine factor VIII is an effective therapeutic for hemophilia patients with inhibitor due to its low cross-reactivity; however, the molecular basis for this behavior is poorly understood. In this study, the X-ray crystal structure of the porcine factor VIII C2 domain was determined, and superposition of the human and porcine C2 domains demonstrates that most surface-exposed differences cluster on the face harboring the "non-classical" antibody epitopes. Furthermore, antibody-binding results illustrate that the "classical" 3E6 antibody can bind both the human and porcine C2 domains, although the inhibitory titer to human factor VIII is 41 Bethesda Units (BU)/mg IgG versus 0.8 BU/mg IgG to porcine factor VIII, while the non-classical G99 antibody does not bind to the porcine C2 domain nor inhibit porcine factor VIII activity. Further structural analysis of differences between the electrostatic surface potentials suggest that the C2 domain binds to the negatively charged phospholipid surfaces of activated platelets primarily through the 3E6 epitope region. In contrast, the G99 face, which contains residue 2227, should be distal to the membrane surface. Phospholipid binding assays indicate that both porcine and human factor VIII C2 domains bind with comparable affinities, and the human K2227A and K2227E mutants bind to phospholipid surfaces with similar affinities as well. Lastly, the G99 IgG bound to PS-immobilized factor VIII C2 domain with an apparent dissociation constant of 15.5 nM, whereas 3E6 antibody binding to PS-bound C2 domain was not observed.