Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.
by
Colin Havenar-Daughton;
Madelene Lindqvist;
Antje Heit;
Jennifer E. Wu;
Samantha M. Reiss;
Kayla Kendric;
Simon Belanger;
Sudhir Kasturi;
Elise Landais;
Rama Akondy;
Helen M. McGuire;
Marcella Bothwell;
Parsia A. Vagefi;
Eileen Scully;
Georgia D. Tomaras;
Mark M. Davis;
Pascal Poignard;
Rafi Ahmed;
Bruce D. Walker;
Bali Pulendran;
M. Juliana McElrath;
Daniel E. Kaufmann;
Shane Crotty
Significantly higher levels of plasma CXCL13 [chemokine (C-X-Cmotif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans,making themonitoring of GC activity by direct assessment of GC B cells and germinal center CD4+ T follicular helper (GC Tfh) cells problematic.
The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS+ (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.
Mucosal surfaces are vulnerable to human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection and thus are key sites for eliciting vaccine-mediated protection. Vaccine protocols carried out at the Yerkes Primate Research Center utilized SIVmac239-based immunization strategies with intrarectal and intravaginal SIVsmE660 challenge of rhesus macaques. We investigated whether there were genetic signatures associated with SIVsmE660 intrarectal and intravaginal transmissions in vaccinated and unvaccinated monkeys. When transmitted/founder (T/F) envelope (Env) sequences from 49 vaccinated and 15 unvaccinated macaques were compared to each other, we were unable to identify any vaccine breakthrough signatures. In contrast,when the vaccinated and control T/F Envs were combined and compared to the challenge stock, residues at gp120 positions 23, 45, 47, and 70 (Ile-Ala-Lys-Asn [I-A-K-N]) emerged as signatures of mucosal transmission. However, T/F Envs derived from intrarectal and intravaginal infections were not different. Our data suggest that the vaginal and rectal mucosal environments both imposed a strong selection bias for SIVsmE660 variants carrying I-A-K-N that was not further enhanced by immunization.These findings, combined with the strong conservation of A-K-N in most HIV-2/SIVsmm isolates and the analogous residues in HIV-1/SIVcpz isolates, suggest that these residues confer increased transmission fitness to SIVsmE660.
by
Colin Havenar-Daughton;
Diane G. Carnathan;
Alba Torrents de la Peña;
Matthias Pauthner;
Bryan Briney;
Samantha M. Reiss;
Jennifer S Wood;
Kirti Kaushik;
Marit J. van Gils;
Sandy Rosales;
Patricia van der Woude;
Michela Locci;
Khoa M. Le;
Steven W. de Taeye;
Devin Sok;
Ata Ur Rasheed Mohammed;
Jessica Huang;
Sanjeev Gumber;
Anapatricia Garcia;
Sudhir Kasturi;
Bali Pulendran;
John P. Moore;
Rafi Ahmed;
Grégory Seumois;
Dennis R. Burton;
Rogier W. Sanders;
Guido Silvestri;
Shane Crotty
Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization (SOSIP.v5.2) whereas others did not. This was not because HIV Env trimers were immunologically silent because all monkeys made similar ELISA-binding antibody responses; the key difference was nAb versus non-nAb responses. We explored the immunological barriers to HIV nAb responses by combining a suite of techniques, including longitudinal lymph node fine needle aspirates. Unexpectedly, nAb development best correlated with booster immunization GC B cell magnitude and Tfh characteristics of the Env-specific CD4 T cells. Notably, these factors distinguished between successful and unsuccessful antibody responses because GC B cell frequencies and stoichiometry to GC Tfh cells correlated with nAb development, but did not correlate with total Env Ab binding titers.
by
Caroline Petitdemange;
Sudhir Kasturi;
Pamela A. Kozlowski;
Rafiq Nabi;
Claire F. Quarnstrom;
Pradeep Babu Jagadeesh Reddy;
Cynthia Derdeyn;
Lori M. Spicer;
Parin Patel;
Traci Legere;
Yevgeniy O. Kovalenkov;
Celia C. Labranche;
Francois Villinger;
Mark Tomai;
John Vasilakos;
Barton Haynes;
C.Yong Kang;
James S. Gibbs;
Jonathan W. Yewdell;
Dan Barouch;
Jens Wrammert;
David Montefiori;
Eric Hunter;
Rama Rao Amara;
David Masopust;
Bali Pulendran
Antibodies and cytotoxic T cells represent 2 arms of host defense against pathogens. We hypothesized that vaccines that induce both high-magnitude CD8+ T cell responses and antibody responses might confer enhanced protection against HIV. To test this hypothesis, we immunized 3 groups of nonhuman primates: (a) Group 1, which includes sequential immunization regimen involving heterologous viral vectors (HVVs) comprising vesicular stomatitis virus, vaccinia virus, and adenovirus serotype 5-expressing SIVmac239 Gag; (b) Group 2, which includes immunization with a clade C HIV-1 envelope (Env) gp140 protein adjuvanted with nanoparticles containing a TLR7/8 agonist (3M-052); and (c) Group 3, which includes a combination of both regimens. Immunization with HVVs induced very high-magnitude Gag-specific CD8+ T cell responses in blood and tissue-resident CD8+ memory T cells in vaginal mucosa. Immunization with 3M-052 adjuvanted Env protein induced robust and persistent antibody responses and long-lasting innate responses. Despite similar antibody titers in Groups 2 and 3, there was enhanced protection in the younger animals in Group 3, against intravaginal infection with a heterologous SHIV strain. This protection correlated with the magnitude of the serum and vaginal Env-specific antibody titers on the day of challenge. Thus, vaccination strategies that induce both CD8+ T cell and antibody responses can confer enhanced protection against infection.
by
Prabhu S. Arunachalam;
Tysheena P. Charles;
Vineet Joag;
Venkata S. Bollimpelli;
Madeleine K. D. Scott;
Florian Wimmers;
Samantha L. Burton;
Celia C. Labranche;
Caroline Petitdemange;
Sailaja Gangadhara;
Tiffany M. Styles;
Clare F. Quarnstrom;
Korey A. Walter;
Thomas J. Ketas;
Traci Legere;
PBJ Reddy;
Sudhir Kasturi;
Anthony Tsai;
Bertrand Z. Yeung;
Shakti Gupta;
Mark Tomai;
John Vasilakos;
George M. Shaw;
Chil Yong Kang;
John P. Moore;
Shankar Subramaniam;
Purvesh Khatri;
David Montefiori;
Pamela A. Kozlowski;
Cynthia Derdeyn;
Eric Hunter;
David Masopust;
Rama Amara;
Bali Pulendran
Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.
We used a systems biological approach to study innate and adaptive responses to influenza vaccination in humans, during 3 consecutive influenza seasons. Healthy adults were vaccinated with inactivated (TIV) or live attenuated (LAIV) influenza vaccines. TIV induced greater antibody titers and enhanced numbers of plasmablasts than LAIV. In TIV vaccinees, early molecular signatures correlated with, and accurately predicted, later antibody titers in two independent trials. Interestingly, the expression of Calcium/calmodulin-dependent kinase IV (CamkIV) at day 3 was inversely correlated with later antibody titers. Vaccination of CamkIV −/− mice with TIV induced enhanced antigen-specific antibody titers, demonstrating an unappreciated role for CaMKIV in the regulation of antibody responses. Thus systems approaches can predict immunogenicity, and reveal new mechanistic insights about vaccines.
by
Timothy N Hoang;
Elise G Viox;
Amit Upadhyay;
Zachary Strongin;
Gregory K Tharp;
Maria Pino;
Rayhane Nchioua;
Maximillian Hirschenberger;
Matthew Gagne;
Kevin Nguyen;
Justin L Harper;
Shir Marciano;
Arun K Boddapati;
Kathryn L Pellegrini;
Jennifer Tisoncik-Go;
Leanne S Whitmore;
Kirti A Karunakaran;
Meissa Roy;
Shannon Kirejczyk;
Elizabeth H Curran;
Chelsea Wallace;
Jennifer S Wood;
Fawn Connor-Stroud;
Sudhir Kasturi;
Rebecca Levit;
Michael Gale, Jr;
Thomas H Vanderford;
Guido Silvestri;
Kathleen Busman-Sahay;
Jacob D Estes;
Monica Vaccari;
Daniel C Douek;
Konstantin MJ Sparrer;
Frank Kirchhoff;
Gideon Schreiber;
Steven Bosinger;
Mirko Paiardini
Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-β pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NPadjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Envspecific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV).
Immune sensing of a microbe occurs via multiple receptors. How signals from different receptors are coordinated to yield a specific immune response is poorly understood. We demonstrate that the different pathogen recognition receptors, TLR2 and dectin-1, recognizing the same microbial stimulus, stimulate distinct innate and adaptive responses. TLR2 signaling induced splenic dendritic cells (DCs) to express the retinoic acid (RA) metabolizing enzyme Raldh2 and IL-10, and to metabolize vitamin A and stimulate Foxp3+ T regulatory cells (Treg cells). RA acted on DCs to induce Socs3 expression, which suppressed activation of p38 MAPK and pro-inflammatory cytokines. Consistent with this, TLR2 signaling induced Treg cells, and suppressed IL-23 and TH-17/ TH-1 mediated autoimmune responses in vivo. In contrast, dectin-1 signaling mostly induced IL-23 and pro-inflammatory cytokines, and augmented TH-17/ TH-1 mediated autoimmune responses in vivo. These data define a new mechanism for the systemic induction of RA and immune suppression against autoimmunity.