We used a systems biological approach to study innate and adaptive responses to influenza vaccination in humans, during 3 consecutive influenza seasons. Healthy adults were vaccinated with inactivated (TIV) or live attenuated (LAIV) influenza vaccines. TIV induced greater antibody titers and enhanced numbers of plasmablasts than LAIV. In TIV vaccinees, early molecular signatures correlated with, and accurately predicted, later antibody titers in two independent trials. Interestingly, the expression of Calcium/calmodulin-dependent kinase IV (CamkIV) at day 3 was inversely correlated with later antibody titers. Vaccination of CamkIV −/− mice with TIV induced enhanced antigen-specific antibody titers, demonstrating an unappreciated role for CaMKIV in the regulation of antibody responses. Thus systems approaches can predict immunogenicity, and reveal new mechanistic insights about vaccines.
by
Timothy N Hoang;
Elise G Viox;
Amit Upadhyay;
Zachary Strongin;
Gregory K Tharp;
Maria Pino;
Rayhane Nchioua;
Maximillian Hirschenberger;
Matthew Gagne;
Kevin Nguyen;
Justin L Harper;
Shir Marciano;
Arun K Boddapati;
Kathryn L Pellegrini;
Jennifer Tisoncik-Go;
Leanne S Whitmore;
Kirti A Karunakaran;
Meissa Roy;
Shannon Kirejczyk;
Elizabeth H Curran;
Chelsea Wallace;
Jennifer S Wood;
Fawn Connor-Stroud;
Sudhir Kasturi;
Rebecca Levit;
Michael Gale, Jr;
Thomas H Vanderford;
Guido Silvestri;
Kathleen Busman-Sahay;
Jacob D Estes;
Monica Vaccari;
Daniel C Douek;
Konstantin MJ Sparrer;
Frank Kirchhoff;
Gideon Schreiber;
Steven Bosinger;
Mirko Paiardini
Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-β pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.
by
Sudhir Kasturi;
Mohammed Ata-Ur Rasheed;
Colin Havenar-Daughton;
Mathew Pham;
Traci Legere;
Zarpheen Jinnah Sher;
Yevgeny Kovalenkov;
Sanjeev Gumber;
Jessica Y Huang;
Raphael Gottardo;
William Fulp;
Alicia Sato;
Sheetal Sawant;
Sherry Stanfield-Oakley;
Nicole Yates;
Celia LaBranche;
Munir S Alam;
Georgia Tomaras;
Guido Ferrari;
David Montefiori;
Jens Wrammert;
Francois Villinger;
Mark Tomai;
John Vasilakos;
Christopher B Fox;
Steven G Reed;
Barton F Haynes;
Shane Crotty;
Rafi Ahmed;
Bali Pulendran
A fundamental challenge in vaccinology is learning how to induce durable antibody responses. Live viral vaccines induce antibody responses that last a lifetime, but those induced with subunit vaccines wane rapidly. Studies in mice and humans have established that long-lived plasma cells (LLPCs) in the bone marrow (BM) are critical mediators of durable antibody responses. Here, we present data that adjuvanting an HIV-1 clade C 1086.C-derived gp140 immunogen (Env) with a novel synthetic Toll-like receptor (TLR)-7/8 agonist named 3M-052 formulated in poly(lactic-co-glycolic)acid or PLGA nanoparticles (NPs) or with alum, either alone or in combination with a TLR-4 agonist GLA, induces notably high and persistent (up to ~1 year) frequencies of Env-specific LLPCs in the BM and serum antibody responses in rhesus macaques. Up to 36 and 18% of Env-specific cells among total IgG-secreting BM-resident plasma cells were detected at peak and termination, respectively. In contrast, adjuvanting Env with alum or GLA in NP induced significantly lower (~<100-fold) LLPC and antibody responses. Immune responses induced by 3M-052 were also significantly higher than those induced by a combination of TLR-7/8 (R848) and TLR-4 (MPL) agonists. Adjuvanting Env with 3M-052 also induced robust activation of blood monocytes, strong plasmablast responses in blood, germinal center B cells, T follicular helper (TFH) cells, and persistent Env-specific plasma cells in draining lymph nodes. Overall, these results demonstrate efficacy of 3M-052 in promoting high magnitude and durability of antibody responses via robust stimulation of innate immunity and BM-resident LLPCs.
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NPadjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Envspecific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV).
High-dimensional cellular and molecular profiling of biological samples highlights the need for analytical approaches that can integrate multi-omic datasets to generate prioritized causal inferences. Current methods are limited by high dimensionality of the combined datasets, the differences in their data distributions, and their integration to infer causal relationships. Here, we present Essential Regression (ER), a novel latent-factor-regression-based interpretable machine-learning approach that addresses these problems by identifying latent factors and their likely cause-effect relationships with system-wide outcomes/properties of interest. ER can integrate many multi-omic datasets without structural or distributional assumptions regarding the data. It outperforms a range of state-of-the-art methods in terms of prediction. ER can be coupled with probabilistic graphical modeling, thereby strengthening the causal inferences. The utility of ER is demonstrated using multi-omic system immunology datasets to generate and validate novel cellular and molecular inferences in a wide range of contexts including immunosenescence and immune dysregulation.
Immune sensing of a microbe occurs via multiple receptors. How signals from different receptors are coordinated to yield a specific immune response is poorly understood. We demonstrate that the different pathogen recognition receptors, TLR2 and dectin-1, recognizing the same microbial stimulus, stimulate distinct innate and adaptive responses. TLR2 signaling induced splenic dendritic cells (DCs) to express the retinoic acid (RA) metabolizing enzyme Raldh2 and IL-10, and to metabolize vitamin A and stimulate Foxp3+ T regulatory cells (Treg cells). RA acted on DCs to induce Socs3 expression, which suppressed activation of p38 MAPK and pro-inflammatory cytokines. Consistent with this, TLR2 signaling induced Treg cells, and suppressed IL-23 and TH-17/ TH-1 mediated autoimmune responses in vivo. In contrast, dectin-1 signaling mostly induced IL-23 and pro-inflammatory cytokines, and augmented TH-17/ TH-1 mediated autoimmune responses in vivo. These data define a new mechanism for the systemic induction of RA and immune suppression against autoimmunity.
The mechanisms that initiate T helper type 2 (TH2) responses are poorly understood. Here we demonstrate that cysteine protease–induced TH2 responses occur via ‘cooperation’ between migratory dermal dendritic cells (DCs) and basophils positive for interleukin 4 (IL-4). Subcutaneous immunization with papain plus antigen induced reactive oxygen species (ROS) in lymph node DCs and in dermal DCs and epithelial cells of the skin. ROS orchestrated TH2 responses by inducing oxidized lipids that triggered the induction of thymic stromal lymphopoietin (TSLP) by epithelial cells mediated by Toll-like receptor 4 (TLR4) and the adaptor protein TRIF; by suppressing production of the TH1-inducing molecules IL-12 and CD70 in lymph node DCs; and by inducing the DC-derived chemokine CCL7, which mediated recruitment of IL-4+ basophils to the lymph node. Thus, the TH2 response to cysteine proteases requires DC-basophil cooperation via ROS-mediated signaling.
Robust production of type I interferon (IFN-α/β) in plasmacytoid dendritic cells (pDCs) is crucial for antiviral immunity. Here we show involvement of the mammalian target of rapamycin (mTOR) pathway in regulating interferon production by pDCs. Inhibition of mTOR or its ‘downstream’ mediators, the p70 ribosomal S6 protein kinases p70S6K1 and p70S6K2, during pDC activation by Toll-like receptor 9 (TLR9) blocked the interaction of TLR9 with the adaptor MyD88 and subsequent activation of the interferon-regulatory factor IRF7, which resulted in impaired IFN-α/β production. Microarray analysis confirmed that inhibition of mTOR by the immunosuppressive drug rapamycin suppressed antiviral and anti-inflammatory gene expression. Consistent with this, targeting rapamycin-encapsulated microparticles to antigen-presenting cells in vivo resulted in less IFN-α/β production in response to CpG DNA or the yellow fever vaccine virus strain 17D. Thus, mTOR signaling is crucial in TLR-mediated IFN-α/β responses by pDCs.
The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations withDNA(D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the secondMVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of sevenDNA/MVAand VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control.
by
P. J. Klasse;
Thomas J.. Ketas;
Christopher Cottrell;
Gabriel Ozorowski;
Gargi Debnath;
Diawoye Camara;
Erik Francomano;
Pavel Pugach;
Rajesh P. Ringe;
Celia C. LaBranche;
Marit J. van Gils;
Christine A. Bricault;
Dan H. Barouch;
Shane Crotty;
Guido Silvestri;
Sudhir Kasturi;
Bali Pulendran;
Ian A. Wilson;
David C. Montefiori;
Roger W. Sanders;
Andrew B. Ward;
John P. Moore
The native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities. A precise delineation of immunogenic neutralization epitopes on native-like trimers could help strategies to extend the NAb response to heterologous HIV-1 strains. One autologous NAb epitope on the BG505 Env trimer is known to involve residues lining a hole in the glycan shield that is blocked by adding a glycan at either residue 241 or 289. This glycan-hole epitope accounts for the NAb response of most trimer-immunized rabbits but not for that of a substantial subset. Here, we have used a large panel of mutant BG505 Env-pseudotyped viruses to define additional sites. A frequently immunogenic epitope in rabbits is blocked by adding a glycan at residue 465 near the junction of the gp120 V5 loop and β24 strand and is influenced by amino-acid changes in the structurally nearby C3 region. We name this new site the “C3/465 epitope”. Of note is that the C3 region was under selection pressure in the infected infant from whom the BG505 virus was isolated. A third NAb epitope is located in the V1 region of gp120, although it is rarely immunogenic. In macaques, NAb responses induced by BG505 SOSIP trimers are more often directed at the C3/465 epitope than the 241/289-glycan hole.