Hypoxia is a significant feature of solid tumor cancers. Hypoxia leads to a more malignant phenotype that is resistant to chemotherapy and radiation, is more invasive and has greater metastatic potential. Hypoxia activates the hypoxia inducible factor (HIF) pathway, which mediates the biological effects of hypoxia in tissues. The HIF complex acts as a transcription factor for many genes that increase tumor survival and proliferation. To date, many HIF pathway inhibitors indirectly affect HIF but there have been no clinically approved direct HIF inhibitors. This can be attributed to the complexity of the HIF pathway, as well as to the challenges of inhibiting protein-protein interactions.
While progress has been made in treating cancer, cytotoxic chemotherapeutic agents are still the most widely used drugs and are associated with severe side-effects. Drugs that target unique molecular signalling pathways are needed for treating cancer with low or no intrinsic toxicity to normal cells. Our goal is to target hypoxic tumours and specifically the hypoxia inducible factor (HIF) pathway for the development of new cancer therapies. To this end, we have previously developed benzopyran-based HIF-1 inhibitors such as arylsulfonamide KCN1. However, KCN1 and its earlier analogs have poor water solubility, which hamper their applications. Herein, we describe a series of KCN1 analogs that incorporate a morpholine moiety at various positions. We found that replacing the benzopyran group of KCN1 with a phenyl group with a morpholinomethyl moiety at the para positions had minimal effect on potency and improved the water solubility of two new compounds by more than 10-fold compared to KCN1, the lead compound.
by
Chalet Tan;
Rita de Noronha;
Narra S. Devi;
Adnan A. Jabbar;
Stefan Kaluz;
Yuan Liu;
Suazette Reid Mooring;
K.C. Nicolaou;
Binghe Wang;
Erwin Van Meir
Solid tumors generally grow under hypoxic conditions, a pathophysiological change, which activates the expression of genes responsible for malignant, aggressive, and treatment-refractory properties. Hypoxia inducible factor (HIF) is the chief transcription factor regulating hypoxia-driven gene expression. Therefore, the HIF pathway has become a critical target for cancer therapeutics development. We screened a privileged library of about 10,000 natural-product-like compounds using a cell-based assay for HIF-dependent transcriptional activity and identified several arylsulfonamide HIF pathway inhibitors. Among these compounds, the most potent ones showed an IC50 of ~0.5 μM in the hypoxia-responsive element (HRE)-luciferase reporter system. Further studies are needed to fully elucidate the mechanism of action of this class of compounds and their structure-activity relationship.
Purpose:
Uveal melanoma (UM) is the most prevalent and lethal intraocular malignancy in adults. Here, we examined the importance of hypoxia in UM growth and tested the antitumor effects of arylsulfonamide 64B, an inhibitor of the hypoxia-induced factor (HIF) pathway in animal models of UM and investigated the related mechanisms.
Experimental Design:
UM cells were implanted in the uvea of mice eyes and mice systemically treated with 64B. Drug effect on primary eye tumor growth, circulating tumor cells, metastasis formation in liver, and survival were examined. 64B effects on UM cell growth, invasion and hypoxia-induced expression of C-X-C chemokine receptor type 4 (CXCR4) and mesenchymal–epithelial transition factor (c-Met) were measured. Luciferase reporter assays, chromatin immunoprecipitation, co-immunoprecipitation, and cellular thermal shift assays were used to determine how 64B interferes with the HIF transcriptional complex.
Results:
Systemic administration of 64B had potent antitumor effects against UM in several orthotopic mouse models, suppressing UM growth in the eye (70% reduction) and spontaneous liver metastasis (50% reduction), and extending mice survival (P < 0.001) while being well tolerated. 64B inhibited hypoxia-induced expression of CXCR4 and c-Met, 2 key drivers of tumor invasion and metastasis. 64B disrupted the HIF-1 complex by interfering with HIF-1a binding to p300/CBP co-factors, thus reducing p300 recruitment to the MET and CXCR4 gene promoters. 64B could thermostabilize p300, supporting direct 64B binding to p300.
Conclusions:
Our preclinical efficacy studies support the further optimization of the 64B chemical scaffold toward a clinical candidate for the treatment of UM.
The original version of this Article contained an error in the author affiliations. Affiliation number 1 incorrectly read ‘Department of Neurosurgery, Wallace Tumor Institute, University of Alabama at Birmingham, 520E, 1720 2nd Ave. South, Birmingham, AL 35294, USA’. It should be ‘Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA’. A new affiliation has been added for the Author Erwin G. Van Meir, which is ‘Department of Neurosurgery and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), WTI 520E, 1720 2nd Ave. South Birmingham, AL, 35294, USA’. This has now been corrected in both the PDF and HTML versions of the Article.
Purpose
The hypoxia inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in cancer patients. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had anti-tumorigenic properties in vivo and further defined its mechanism of action.
Experimental Design
We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF1α/HIF1β/p300 transcription complex.
Results
KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1 and carbonic anhydrase 9, in an HRE-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not down-regulate levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional co-activators p300/CBP.
Conclusions
Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression.
Brain angiogenesis inhibitor 1 (BAI1), an orphan GPCR-type seven transmembrane receptor, was recently found mutated or silenced in multiple human cancers and can interfere with tumor growth when overexpressed. Yet, little is known about the molecular mechanisms through which this novel tumor suppressor exerts its anti-cancer effects. Here, we demonstrate that the N-terminus of BAI1 is cleaved extracellularly to generate a truncated receptor and a 40 kDa fragment that inhibits angiogenesis. We demonstrate that this novel proteolytic processing event depends on a two-step cascade of protease of activation: proprotein convertases, primarily furin, activate latent matrix metalloproteinase 14, which then directly cleaves BAI1 to release the bioactive fragment. These findings significantly augment our knowledge of BAI1 by showing a novel posttranslational mechanism regulating BAI1 activity through cancer-associated proteases, have important implications for BAI1 function and regulation, and present novel opportunities for therapy of cancer and other vascular diseases.
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy in adults, and patients that develop metastases (~50%) survive <1 year, highlighting the urgent need for new therapies. TCGA has recently revealed that a hypoxia gene signature is associated with poor UM patient prognosis. Here we show that expression of hypoxia-regulated collagen prolyl-4-hydroxylase genes P4HA1 and P4HA2 is significantly upregulated in UM patients with metastatic disease and correlates with poor prognosis, suggesting these enzymes might be key tumor drivers. We targeted hypoxia-induced expression of P4HA1/2 in UM with KCN1, a hypoxia inducible factor-1 (HIF-1) pathway inhibitor and found potent inhibition of primary and metastatic disease and extension of animal survival, without overt side effects. At the molecular level, KCN1 antagonized hypoxia-induced expression of P4HA1 and P4HA2, which regulate collagen maturation and deposition in the extracellular matrix. The treatment decreased prolyl hydroxylation, induced proteolytic cleavage and rendered a disordered structure to collagen VI, the main collagen produced by UM, and reduced UM cell invasion. Together, these data demonstrate that extracellular collagen matrix formation can be targeted in UM by inhibiting hypoxia-induced P4HA1 and P4HA2 expression, warranting further development of this strategy in patients with uveal melanoma.