Ruxolitinib is a US Food and Drug Administration–approved orally administered Janus kinase (1/2) inhibitor that reduces cytokine-induced inflammation. As part of a randomized, phase 2, open-label trial, ruxolitinib (10 mg twice daily) was administered to HIV-positive, virologically suppressed individuals (33 men, 7 women) on antiretroviral therapy (ART) for 5 weeks. Herein, we report the population PK subsequently determined from this study. Plasma concentrations of ruxolitinib (294 samples) and antiretroviral agents were measured at week 1 (N = 39 participants) and week 4 or 5 (N = 37). Ruxolitinib PK was adequately described with a 2-compartment model with first-order absorption and elimination with distribution volumes normalized to mean body weight (91.5 kg) and a separate typical clearance for participants administered efavirenz (a known cytochrome P450 3A4 inducer). Participants administered an ART regimen with efavirenz had an elevated typical apparent oral clearance versus the integrase inhibitor regimen group (22.5 vs 12.9 L/hr; N = 14 vs 25). Post hoc predicted apparent oral clearance was likewise more variable and higher (P <.0001) in those administered efavirenz. There was an ≈25% variation in ruxolitinib plasma exposures between week 1 and week 4/5. ART plasma concentrations resembled those from PK studies without ruxolitinib. Therefore, integrase inhibitor–based ART regimens may be preferred over efavirenz-based regimens when ruxolitinib is administered to HIV-positive individuals.
Understanding the cellular pharmacology of antiretroviral agents in macrophages and subsequent correlation with antiviral potency provides a sentinel foundation for definition of the dynamics between antiretroviral agents and viral reservoirs across multiple cell types, with the goal of eradication of HIV-1 from these cells. Various clinically relevant nucleoside antiviral agents, and the integrase inhibitor raltegravir, were selected for this study. The intracellular concentrations of the active metabolites of the nucleoside analogs were found to be 5- to 140-fold lower in macrophages than in lymphocytes, and their antiviral potency was significantly lower in macrophages constitutively activated with macrophage colony-stimulating factor (M-CSF) during acute infection than in resting macrophages (EC50, 0.4 to 9.42 μM versus 0.03 to 0.4 μM, respectively). Although tenofovir-treated cells displayed significantly lower intracellular drug levels than cells treated with its prodrug, tenofovir disoproxil fumarate, the levels of tenofovir-diphosphate for tenofovir-treated cells were similar in lymphocytes and macrophages. Raltegravir also displayed significantly lower intracellular concentrations in macrophages than in lymphocytes, independent of the activation state, but had similar potencies in resting and activated macrophages. These data underscore the importance of delivering adequate levels of drug to macrophages to reduce and eradicate HIV-1 infection.
Amdoxovir (AMDX) inhibits HIV-1 containing the M184V/I mutation and is rapidly absorbed and deaminated to its active metabolite, β-d-dioxolane guanosine (DXG). DXG is synergistic with zidovudine (ZDV) in HIV-1-infected primary human lymphocytes. A recent in silico pharmacokinetic (PK)/enzyme kinetic study suggested that ZDV at 200 mg twice a day (b.i.d.) may reduce toxicity without compromising efficacy relative to the standard 300-mg b.i.d. dose. Therefore, an intense PK clinical study was conducted using AMDX/placebo, with or without ZDV, in 24 subjects randomized to receive oral AMDX at 500 mg b.i.d., AMDX at 500 mg plus ZDV at 200 or 300 mg b.i.d., or ZDV at 200 or 300 mg b.i.d. for 10 days. Full plasma PK profiles were collected on days 1 and 10, and complete urine sampling was performed on day 9. Plasma and urine concentrations of AMDX, DXG, ZDV, and ZDV-5′-O-glucuronide (GZDV) were measured using a validated liquid chromatography-tandem mass spectrometry method. Data were analyzed using noncompartmental methods, and multiple comparisons were performed on the log-transformed parameters, at steady state. Coadministration of AMDX with ZDV did not significantly change either of the plasma PK parameters or percent recovery in the urine of AMDX, DXG, or ZDV/GZDV. Larger studies with AMDX/ZDV, with a longer duration, are warranted.
Epidermal growth factor receptor (EGFR) and COX-2 inhibitors synergistically inhibit head and neck squamous cell carcinoma tumorigenesis in preclinical studies. We conducted a phase I and pharmacokinetic study with the erlotinib and celecoxib combination in patients with advanced premalignant lesions. Thirty-six subjects with oral leukoplakia, mild, moderate, or severe dysplasia, or carcinoma in situ were screened for study participation; 12 consented and received therapy for a median of 5.38 months. Erlotinib was escalated following a standard 3+3 design at 50, 75, and 100 mg orally daily and celecoxib was fixed at 400 mg twice daily for 6 months. Biopsy of lesions and cytobrush of normal mucosa were performed at baseline, 3, 6, and 12 months. Erlotinib pharmacokinetics were analyzed in 10 subjects. The maximum tolerated dose of erlotinib with celecoxib 400 mg BID was 50 mg per day with skin rash being the main observed toxicity. Overall histologic response rate was 63% (complete response, 43%; partial response, 14%; stable disease, 29%; and disease progression, 14%). With median follow-up of 36 months, mean time to progression to higher-grade dysplasia or carcinoma was 25.4 months. Downregulation of EGFR and p-ERK in follow-up biopsies correlated with response to treatment. Larger average erlotinib V/F (approximately 308 L) and CL/F (8.3 L/h) compared with previous studies may be related to relatively large average bodyweights. Average erlotinib t1/2 was 25.6 hours. Encouraging responses to the celecoxib and erlotinib combination correlated with EGFR pathway inhibition. Although erlotinib-related rash was the main limitation to dose escalation, the intervention was well tolerated.
BACKGROUND: 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol) was used clinically three decades ago as an oral antiparasitic agent and to increase intestinal absorption of zinc in patients with acrodermatitis enteropathica, a genetic disorder of zinc absorption. Use of clioquinol was epidemiologically linked to subacute myelo-optic neuropathy (SMON), characterized by peripheral neuropathy and blindness, which affected 10,000 patients in Japan. Discontinuation of oral clioquinol use led to elimination of SMON, however, the mechanism of how clioquinol induces neurotoxicity is unclear.
MATERIALS AND METHODS: We tested the effect of clioquinol-metal chelates on neural crest-derived melanoma cells. The effect of clioquinol chelates on cells was further studied by electron microscopy and by a mitochondrial potential-sensitive fluorescent dye.
RESULTS: Of the ions tested, only clioquinol-zinc chelate demonstrated cytotoxicity. The cytotoxicity of clioquinol-zinc chelate was extremely rapid, suggesting that its primary effect was on the mitochondria. Electron microscopic analysis demonstrated that clioquinol-zinc chelate caused mitochondrial damage. This finding was further confirmed by the observation that clioquinol-zinc chelate caused a decrease in mitochondrial membrane potential.
CONCLUSIONS: We demonstrate that clioquinol, in the presence of zinc, is converted to a potent mitochondrial toxin. The phenomenon of clioquinol mediated toxicity appears to be specific to zinc and is not seen with other metals tested. Since clioquinol has been shown to cause increased systemic absorption of zinc in humans, it is likely that clioquinol-zinc chelate was present in appreciable levels in patients with SMON and may be the ultimate causative toxin of SMON.
Background and aim
The incidence of hepatocellular carcinoma (HCC) decreases significantly in chronic hepatitis C (CHC) patients with sustained virologic response (SVR) after pegylated-interferon plus ribavirin (PR) or direct-acting antiviral (DAAs) therapy. We follow-up a single cohort of CHC patients to identify risk factors associated with HCC development post-SVR.
Method
CHC patients with SVR in Beijing/Hong Kong were followed up at 12–24 weekly intervals with surveillance for HCC by ultrasonography and alpha-fetoprotein (AFP). Multivariate Cox proportional hazards regression analysis was used to explore factors associated with HCC occurrence.
Results
Between October 2015 and May 2017, SVR was observed in 519 and 817 CHC patients after DAAs and PR therapy respectively. After a median post -SVR follow-up of 48 months, HCC developed in 54 (4.4%) SVR subjects. By adjusted Cox analysis, older age (≥55 years) [HR 2.4, 95% CI (1.3–4.3)], non-alcoholic fatty liver diseases [HR 2.4, 95%CI (1.3–4.2), higher AFP level (≥20 ng/ml) [HR 3.4, 95%CI (2.0–5.8)], higher liver stiffness measurement (≥14.6 kPa) [HR 4.2, 95%CI (2.3–7.6)], diabetes mellitus [HR 4.2, 95%CI (2.4–7.4)] at pre-treatment were associated with HCC occurrence. HCC patients in the DAAs induced SVR group had a higher prevalence of NAFLD as compared with those in the PR induced SVR group, 62% (18/29) vs 28% (7/25), p = 0.026. A nomogram formulated with the above six independent variables had a Concordance-Index of 0.835 (95% CI 0.783–0.866).
Conclusion
Underlying NAFLD is associated with increased incidence of HCC in chronic HCV patients post-SVR, particularly in those treated with DAA.
Despite combined antiretroviral therapy (cART), HIV infection in the CNS persists with reported increases in activation of macrophages (MΦ), microglia, and surrounding astrocytes/neurons, conferring HIV-induced inflammation. Chronic inflammation results in HIV-associated neurocognitive disorders (HAND) with reported occurrence of up to half of individuals with HIV infection. The existing HAND mouse model used by laboratories including ours, and the effect of novel agents on its pathology present with labor-intensive and time-consuming limitations since brain sections and immunohistochemistry assays have to be performed and analyzed. A novel flow cytometry-based system to objectively quantify phenotypic effects of HIV using a SCID mouse HAND model was developed which demonstrated that the HIV-infected mice had significant increases in astrogliosis, loss of neuronal dendritic marker, activation of murine microglia, and human macrophage explants compared to uninfected control mice. HIV p24 could also be quantified in the brains of the infected mice. Correlation of these impairments with HIV-induced brain inflammation and previous behavioral abnormalities studies in mice suggests that this model can be used as a fast and relevant throughput methodology to quantify preclinical testing of novel treatments for HAND.
BACKGROUND: Inflammation is associated with end-organ disease and mortality for people with human immunodeficiency virus (PWH). Ruxolitinib, a Jak 1/2 inhibitor, reduces systemic inflammation for individuals without human immunodeficiency virus (HIV) and HIV reservoir markers ex vivo. The goal of this trial was to determine safety and efficacy of ruxolitinib for PWH on antiretroviral therapy (ART). METHODS: AIDS Clinical Trials Group (ACTG) A5336 was an open-label, multisite, randomized controlled trial (RCT). Participants were randomly assigned (2:1) using centralized software to ruxolitinib (10 mg twice daily) plus stable ART for 5 weeks vs ART alone, stratified by efavirenz use. Eligible participants were suppressed on ART for ≥2 years, without comorbidities, and had >350 CD4+ T cells/µL. Primary endpoints were premature discontinuation, safety events, and change in plasma interleukin 6 (IL-6). Secondary endpoints included other measures of inflammation/immune activation and HIV reservoir. RESULTS: Sixty participants were enrolled from 16 May 2016 to 10 January 2018. Primary safety events occurred in 2.5% (1 participant) for ruxolitinib and 0% for controls (P = .67). Three participants (7.5%) prematurely discontinued ruxolitinib. By week 5, differences in IL-6 (mean fold change [FC], 0.93 vs 1.10; P = .18) and soluble CD14 (mean FC, 0.96 vs 1.08; relative FC, 0.96 [90% confidence interval {CI}, .90-1.02]) levels for ruxolitinib vs controls was observed. Ruxolitinib reduced CD4+ T cells expressing HLA-DR/CD38 (mean difference, -0.34% [90% CI, -.66% to -.12%]) and Bcl-2 (mean difference, -3.30% [90% CI, -4.72% to -1.87%]). CONCLUSIONS: In this RCT of healthy, virologically suppressed PWH on ART, ruxolitinib was well-tolerated. Baseline IL-6 levels were normal and showed no significant reduction. Ruxolitinib significantly decreased markers of immune activation and cell survival. Future studies of Jak inhibitors should target PWH with residual inflammation despite suppressive ART. CLINICAL TRIALS REGISTRATION: NCT02475655.
While treatment options are available for hepatitis B virus (HBV), there is currently no cure. Anti-HBV nucleoside analogs and interferon-alpha 2b rarely clear HBV covalently closed circular DNA (cccDNA), requiring lifelong treatment. Recently, we identified GLP-26, a glyoxamide derivative which modulates HBV capsid assembly. The impact of GLP-26 on viral replication and integrated DNA was assessed in an HBV nude mouse model bearing HBV transfected AD38 xenografts. At day 45 post-infection, GLP-26 reduced HBV titers by 2.3–3 log10 versus infected placebo-treated mice. Combination therapy with GLP-26 and entecavir reduced HBV log10 titers by 4.6-fold versus placebo. Next, we examined the pharmacokinetics (PK) in cynomolgus monkeys administered GLP-26 via IV (1 mg/kg) or PO (5 mg/kg). GLP-26 was found to have 34% oral bioavailability, with a mean input time of 3.17 h. The oral dose produced a mean peak plasma concentration of 380.7 ng/mL, observed 0.67 h after administration (~30-fold > in vitro EC90 corrected for protein binding), with a mean terminal elimination half-life of 2.4 h and a mean area under the plasma concentration versus time curve of 1660 ng·hr/mL. GLP-26 was 86.7% bound in monkey plasma. Lastly, GLP-26 demonstrated a favorable toxicity profile confirmed in primary human cardiomyocytes. Thus, GLP-26 warrants further preclinical development as an add on to treatment for HBV infection.
Nucleoside antiretroviral agents are chiral small molecules that have distinct advantages compared to other classes including long intracellular half-lives, low protein binding, sustained antiviral response when a dose is missed, and ease of chemical manufacture. They mimic natural nucleosides and target a unique but complex viral polymerase that is essential for viral replication. They remain the cornerstone of highly active antiretroviral therapy (HAART) and are usually combined with non-nucleoside reverese transcriptase and protease inhibitors to provide powerful antiviral responses to prevent or delay the emergence of drug-resistant human immunodeficiency virus (HIV). The pharmacological and virological properties of a selected group of nucleoside analogs are described. Some of the newer nucleoside analogs have a high genetic barrier to resistance development. The lessons learned are that each nucleoside analog should be treated as a unique molecule since any structural modification, including a change in the enantiomeric form, can affect metabolism, pharmacokinetics, efficacy, toxicity and resistance profile.