The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection.
by
Justine Liepkalns;
Aseem Pandey;
Amelia R. Hofstetter;
Amrita Kumar;
Enitra N. Jones;
Weiping Cao;
Feng Liu;
Min Z. Levine;
Suryaprakash Sambhara;
Shivaprakash Gangappa
Impairment of immune defenses can contribute to severe influenza infections. Rapamycin is an immunosuppressive drug often used to prevent transplant rejection and is currently undergoing clinical trials for treating cancers and autoimmune diseases. We investigated whether rapamycin has deleterious effects during lethal influenza viral infections. We treated mice with two concentrations of rapamycin and infected them with A/Puerto Rico/8/1934 (A/PR8), followed by a heterosubtypic A/Hong Kong/1/68 (A/HK68) challenge. Our data show similar morbidity, mortality, and lung viral titer with both rapamycin treatment doses compared to untreated controls, with a delay in morbidity onset in rapamycin high dose recipients during primary infection. Rapamycin treatment at high dose also led to increase in percent cytokine producing T cells in the spleen. However, all infected animals had similar serum antibody responses against A/PR8. Post-A/HK68 challenge, rapamycin had no impeding effect on morbidity or mortality and had similar serum antibody levels against A/PR8 and A/HK68. We conclude that rapamycin treatment does not adversely affect morbidity, mortality, or antibody production during lethal influenza infections.
by
Weiping Cao;
Justine Liepkalns;
Ram P. Kamal;
Adrian J. Reber;
Jin Hyang Kim;
Amelia R. Hofstetter;
Samual Amoah;
James Stevens;
Priya Ranjan;
Shivaprakash Gangappa;
Ian A. York;
Suryaprakash Sambhara
Avian H7N9 influenza virus infection with fatal outcomes continues to pose a pandemic threat and highly immunogenic vaccines are urgently needed. In this report we show that baculovirus-derived recombinant H7 hemagglutinin protein, when delivered with RIG-I ligand, induced enhanced antibody and T cell responses and conferred protection against lethal challenge with a homologous H7N9 virus. These findings indicate the potential utility of RIG-I ligands as vaccine adjuvants to increase the immunogenicity of recombinant H7 hemagglutinin.
by
Weiping Cao;
Margarita Mishina;
Samuel Amoah;
Wadzanai P. Mboko;
Caitlin Bohannon;
James McCoy;
Suresh K. Mittal;
Shivaprakash Gangappa;
Suryaprakash Sambhara
Avian influenza virus infection is a serious public health threat and preventive vaccination is the most cost-effective public health intervention strategy. Unfortunately, currently available unadjuvanted avian influenza vaccines are poorly immunogenic and alternative vaccine formulations and delivery strategies are in urgent need to reduce the high risk of avian influenza pandemics. Cationic polymers have been widely used as vectors for gene delivery in vitro and in vivo. In this study, we formulated H5N1 influenza vaccines with GenJet™ or in vivo-jetPEI®, and showed that these formulations significantly enhanced the immunogenicity of H5N1 vaccines and conferred protective immunity in a mouse model. Detailed analyses of adaptive immune responses revealed that both formulations induced mixed TH1/TH2 antigen-specific CD4 T-cell responses, antigen-specific cytotoxic CD8 T-cell and memory B-cell responses. Our findings suggest that cationic polymers merit future development as potential adjuvants for mucosal delivery of poorly immunogenic vaccines.
Annual vaccination is routinely used in organ transplant recipients for immunization against seasonal influenza. However, detailed analysis of the kinetics of vaccine-induced immune responses in this population is lacking. In this study, we investigated the kinetics of vaccine strains-specific antibody responses to trivalent influenza vaccine in a group of renal transplant recipients and a control group. First, we found that the geometric mean hemagglutination inhibition titer against all 3 vaccine strains in the transplant cohort was significantly low when compared to control subjects. Next, whereas the control group sera showed significantly higher HA-specific IgG and isotype IgG1 antibodies at all four time points, a similar increase in the transplant group was delayed until day 28. Interestingly, within the transplant group, subjects receiving belatacept/MMF/prednisone-based regimen had significantly lower levels of total IgG and HA-specific IgG when compared to tacrolimus/MMF/prednisone-based regimen. Even though IgG-ASC response in both cohorts peaked at day 7 post-vaccination, the frequency of IgG-ASC was significantly low in the transplant group. Taken together, our studies show delayed kinetics and lower levels of influenza vaccine-specific antibody responses in renal transplant recipients and, more importantly, indicate the need to probe and improve current vaccination strategies in renal transplant recipients.
Blockade of the CD40/CD154 signaling pathway using anti-CD154 antibodies has shown promise in attenuating the alloimmune response and promoting long-term graft survival in murine model systems. Unfortunately, thromboembolic side effects observed in humans have hampered its progression through clinical trials. Appropriately designed anti-CD40 antibodies may provide a suitable alternative. We investigated two isoforms of a novel monoclonal rat anti-mouse CD40 antibody (7E1) for characteristics and effects mirroring those of anti-CD154: 7E1-G1 (an IgG1 isotype) and 7E1-G2b (an IgG2b isotype). In vitro proliferation assays to measure the agonist properties of the two anti-CD40 antibodies revealed similar responses when plate-bound. However, when present as a soluble stimulus, 7E1-G1 but not 7E1-G2b led to proliferation. Importantly, 7E1-G2b was as effective as anti-CD154 when administered in vivo in concert with CTLA4-Ig in promoting both allogeneic bone marrow chimerism and skin graft survival, while 7E1-G1 was not. The protection observed with 7E1-G2b was not due to depletion of CD40 bearing antigen presenting cells. These data suggest that an appropriately designed anti-CD40 antibody can promote graft survival as well as anti-CD154, making 7E1-G2b an attractive substitute in mouse models of costimulation blockade-based tolerance regimens.
Pattern recognition receptors (PRR) sense certain molecular patterns uniquely expressed by pathogens. Retinoic-acid-inducible gene I (RIG-I) is a cytosolic PRR that senses viral nucleic acids and induces innate immune activation and secretion of type I interferons (IFNs). Here, using influenza vaccine antigens, we investigated the consequences of activating the RIG-I pathway for antigen-specific adaptive immune responses. We found that mice immunized with influenza vaccine antigens coadministered with 5'ppp-double-stranded RNA (dsRNA), a RIG-I ligand, developed robust levels of hemagglutination-inhibiting antibodies, enhanced germinal center reaction, and T follicular helper cell responses. In addition, RIG-I activation enhanced antibody affinity maturation and plasma cell responses in the draining lymph nodes, spleen, and bone marrow and conferred protective immunity against virus challenge. Importantly, activation of the RIG-I pathway was able to reduce the antigen requirement by 10- to 100-fold in inducing optimal influenza-specific cellular and humoral responses, including protective immunity. The effects induced by 5'ppp-dsRNA were significantly dependent on type I IFN and IPS-1 (an adapter protein downstream of the RIG-I pathway) signaling but were independent of the MyD88- and TLR3-mediated pathways. Our results show that activation of the RIG-I-like receptor pathway programs the innate immunity to achieve qualitatively and quantitatively enhanced protective cellular adaptive immune responses even at low antigen doses, and this indicates the potential utility of RIG-I ligands as molecular adjuvants for viral vaccines.
Recently, several cases of fatal lymphocytic choriomeningitis virus (LCMV) infection occurred in transplant recipients being treated with the immunosuppressive calcineurin inhibitor FK506. These findings were surprising because LCMV is a noncytolytic virus. To understand how a noncytolytic virus can cause disease under conditions of immunosuppression, we used the mouse LCMV model and found that, similar to the observations in human transplant recipients, LCMV infection of FK506-treated mice resulted in a lethal disease characterized by viremia, lack of seroconversion, and minimal lymphocytic infiltrates in the tissues. However, despite the apparent absence of an antiviral immune response, this disease was orchestrated by virus-specific T cells. FK506 did not prevent the generation and proliferation of LCMV-specific T cells but instead altered their differentiation so that these effector T cells lost the ability to control virus but were still capable of mediating disease. These pathogenic T cells initiated a cytokine storm characterized by high levels of tumor necrosis factor (TNF) and interleukin 6 (IL-6), and depletion of T cells or blockade of these inflammatory cytokines prevented the lethal disease. Our study shows that inhibiting calcineurin can generate pathogenic T cells and indicates that T cell–mediated viral disease can occur even under conditions of immunosuppression. Furthermore, we identify a potential strategy (blockade of TNF and IL-6) for treatment of transplant recipients who have acute complications of viral infection.
Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/ X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1β) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44.
Sirolimus is a potent anti-proliferative agent used clinically to prevent renal allograft rejection. However, little is known about the effects of maintenance immunosuppressive agents on the immune response to potentially protective vaccines. Here we show that sirolimus paradoxically increases the magnitude and quality of the CD8+ T cell response to vaccinia vaccination in non-human primates, fostering more robust recall responses compared to untreated and tacrolimus-treated controls. Enhancement of both the central and effector memory compartments of the vaccinia-specific CD8+ T cell response was observed. These data elucidate new mechanistic characteristics of sirolimus and suggest immune applications extending beyond its role as an immunosuppressant.