The ability of Azotobacter vinelandiiNifIscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. NifIscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm-1) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm-1) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound NifIscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of NifIscA. Fe(III)-bound NifIscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.
We report the observation of a novel intermediate in the reaction of a reduced toluene/o-xylene monooxygenase hydroxylase (ToMOHred) T201S variant, in the presence of a regulatory protein (ToMOD), with dioxygen. This species is the first oxygenated intermediate with an optical band in any toluene monooxygenase. The UV-Vis and Mössbauer spectroscopic properties of the intermediate allowing us to assign it as a peroxodiiron(III) species, T201Speroxo, similar to Hperoxo in methane monooxygenase. Although T201S generates T201Speroxo in addition to optically transparent ToMOHperoxo, previously observed in wild type ToMOH, this conservative variant is catalytically active in steady state catalysis and single turnover experiments, and displays the same regiospecificity for toluene and slightly different regiospecificity for o-xylene oxidation.
Pyruvate formate-lyase activating enzyme (PFL-AE) catalyzes the generation of a catalytically essential glycyl radical on pyruvate formate-lyase (PFL). Purified PFL-AE contains an oxygen-sensitive, labile [4Fe-4S] cluster that undergoes cluster interconversions in vitro, with only the [4Fe-4S]+ cluster state being catalytically active. Such cluster interconversions could play a role in regulating the activity of PFL-AE, and thus of PFL, in response to oxygen levels in vivo. Here we report a Mössbauer investigation on whole cells overexpressing PFL-AE following incubation under aerobic and/or anaerobic conditions and provide evidence that PFL-AE undergoes cluster interconversions in vivo. After 2 h aerobic induction of PFL-AE expression, approximately 44% of the total iron is present in [4Fe-4S]2+ clusters, 6% in [2Fe-2S] 2+ clusters, and the remainder as noncluster FeIII (29%) and FeII (21%) species. Subsequent anaerobic incubation of the culture results in approximately 75% of the total iron being present as [4Fe-4S]2+ clusters, with no detectable [2Fe-2S]2+. Ensuing aerobic incubation of the culture converts the iron species nearly back to the original composition (42% [4Fe-4S]2+, 10% [2Fe-2S] 2+, 19% FeIII, and 29% FeII). The results provide evidence for changes in cluster composition of PFL-AE in response to the redox state of the cell. Furthermore, the Mössbauer spectra reveal that the [4Fe-4S]2+ cluster of PFL-AE in whole cells contains a valence-localized FeIIIFeII pair which has not been previously observed in the purified enzyme. Addition of certain small molecules containing adenosyl moieties, including 5′-deoxyadenosine, AMP, ADP, and methylthioadenosine, to purified PFL-AE reproduces the valence-localized state of the [4Fe-4S]2+ cluster. It is speculated that the [4Fe-4S] 2+ cluster of PFL-AE in whole cells may be coordinated by a small molecule, probably AMP, and that such coordination may protect this labile cluster from oxidative damage.
Spore photoproduct lyase (SPL), a member of the radical SAM superfamily, catalyzes the direct reversal of the spore photoproduct (SP), a thymine dimer specific to bacterial spores, to two thymines. SPL requires S-adenosyl-L-methionine (SAM) and a redox active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40%) as [2Fe-2S]2+ and a smaller amount (15%) as [4Fe-4S]2+ clusters. Upon reduction, the cluster content changes to primarily (60%) [4Fe-4S]+. The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (XANES) and geometric (EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The Fe K-edge EXAFS provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster upon binding SAM on the basis of an Fe…Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay, indicating that SAM is not undergoing reductive cleavage. The XAS data for SPL samples and data for model complexes from literature allowed for the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of SAM presence. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.
Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2]2+ cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4]+ cluster. The excited state electronic properties and ground state electronic and vibrational properties of the linear [Fe3S4]+ cluster have been characterized using UV-visible absorption/CD/MCD, EPR, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4]+ cluster with properties similar to those reported for synthetic linear [Fe3S4]+ clusters and the linear [Fe3S4]+ clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2]2+ clusters, rather than linear [Fe3S4]+ clusters or mixtures of linear [Fe3S4]+ and [Fe2S2]2+ clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4]2+ cluster that competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4]+ and [Fe4S4]2+ clusters in Grx5 has been assessed by spectroscopic, mutational and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4]+ clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4]2+ cluster-containing proteins are discussed in light of these results.