We report Down syndrome (DS)-associated congenital gastrointestinal (GI) defects identified during a 15year, population-based study of the etiology and phenotypic consequences of trisomy 21. Between 1989 and 2004, six sites collected DNA, clinical and epidemiological information on live-born infants with standard trisomy 21 and their parents. We used chi-squared test and logistic regression to explore relationships between congenital GI defects and infant sex, race, maternal age, origin of the extra chromosome 21, and presence of a congenital heart defect. Congenital GI defects were present in 6.7% of 1892 eligible infants in this large, ethnically diverse, population-based study of DS. Defects included esophageal atresia/tracheoesophageal fistula (0.4%), pyloric stenosis (0.3%), duodenal stenosis/atresia (3.9%), Hirschsprung disease (0.8%), and anal stenosis/atresia (1.0%). We found no statistically significant associations between these defects and the factors examined. Although not significant, esophageal atresia was observed more often in infants of younger mothers and Hispanics, Hirschsprung disease was more frequent in males and in infants of younger mothers and blacks, and anal stenosis/atresia was found more often among females and Asians.
Purpose: Advanced maternal age and altered recombination are known risk factors for Down syndrome cases due to maternal nondisjunction of chromosome 21, whereas the impact of other environmental and genetic factors is unclear. The aim of this study was to investigate an association between low maternal socioeconomic status and chromosome 21 nondisjunction. Methods: Data from 714 case and 977 control families were used to assess chromosome 21 meiosis I and meiosis II nondisjunction errors in the presence of three low socioeconomic status factors: (i) both parents had not completed high school, (ii) both maternal grandparents had not completed high school, and (iii) an annual household income of <$25,000. We applied logistic regression models and adjusted for covariates, including maternal age and race/ethnicity. Results: As compared with mothers of controls (n = 977), mothers with meiosis II chromosome 21 nondisjunction (n = 182) were more likely to have a history of one low socioeconomic status factor (odds ratio = 1.81; 95% confidence interval = 1.07-3.05) and ≥2 low socioeconomic status factors (odds ratio = 2.17; 95% confidence interval = 1.02-4.63). This association was driven primarily by having a low household income (odds ratio = 1.79; 95% confidence interval = 1.14-2.73). The same statistically significant association was not detected among maternal meiosis I errors (odds ratio = 1.31; 95% confidence interval = 0.81-2.10), in spite of having a larger sample size (n = 532). Conclusion: We detected a significant association between low maternal socioeconomic status and meiosis II chromosome 21 nondisjunction. Further studies are warranted to explore which aspects of low maternal socioeconomic status, such as environmental exposures or poor nutrition, may account for these results.
Cardiac abnormalities are one of the most common congenital defects observed in individuals with Down syndrome. Considerable research has implicated both folate deficiency and genetic variation in folate pathway genes with birth defects, including both congenital heart defects (CHD) and Down syndrome (DS). Here, we test variation in folate pathway genes for a role in the major DS-associated CHD atrioventricular septal defect (AVSD). In a group of 121 case families (mother, father, and proband with DS and AVSD) and 122 control families (mother, father, and proband with DS and no CHD), tag SNPs were genotyped in and around five folate pathway genes: 5,10-methylenetetrahyrdofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), cystathionine β-synthase (CBS), and the reduced folate carrier (SLC19A1, RFC1). SLC19A1 was found to be associated with AVSD using a multilocus allele-sharing test. Individual SNP tests also showed nominally significant associations with odds ratios of between 1.34 and 3.78, depending on the SNP and genetic model. Interestingly, all marginally significant SNPs in SLC19A1 are in strong linkage disequilibrium (r2≥0.8) with the nonsynonymous coding SNP rs1051266 (c.80A>G), which has previously been associated with nonsyndromic cases of CHD. In addition to SLC19A1, the known functional polymorphism MTHFR c.1298A was over-transmitted to cases with AVSD (P = 0.05) and under-transmitted to controls (P = 0.02). We conclude, therefore, that disruption of the folate pathway contributes to the incidence of AVSD among individuals with DS.
BACKGROUND
Maternal folic acid supplementation has been associated with a reduced risk for neural tube defects, and may be associated with a reduced risk for congenital heart defects, and other birth defects. Individuals with Down syndrome are at high risk for congenital heart defects and have been shown to have abnormal folate metabolism.
METHODS
As part of the population-based case-control National Down Syndrome Project, 1011 mothers of infants with Down syndrome reported their use of folic acid-containing supplements. These data were used to determine whether lack of periconceptional maternal folic acid supplementation is associated with congenital heart defects in Down syndrome. We used logistic regression to test the relationship between maternal folic acid supplementation and the frequency of specific heart defects correcting for maternal race/ethnicity, proband sex, maternal use of alcohol and cigarettes, and maternal age at conception.
RESULTS
Lack of maternal folic acid supplementation was more frequent among infants with Down syndrome and atrioventricular septal defects (OR=1.69; 95% CI, 1.08–2.63; P=0.011) or atrial septal defects (OR=1.69; 95% CI, 1.11–2.58; P=0.007) than among infants with Down syndrome and no heart defect. Preliminary evidence suggests that the patterns of association differ by race/ethnicity and sex of the proband. There was no statistically significant association with ventricular septal defects (OR=1.26; 95% CI, 0.85–1.87; P=0.124).
CONCLUSIONS
Our results suggest that lack of maternal folic acid supplementation is associated with septal defects in infants with Down syndrome.
Both a lack of maternal folic acid supplementation and the presence of genetic variants that reduce enzyme activity in folate pathway genes have been linked to meiotic nondisjunction of chromosome 21; however, the findings in this area of research have been inconsistent. To better understand these inconsistencies, we asked whether maternal use of a folic acid-containing supplement before conception reduces risk for chromosome 21 nondisjunction. Using questionnaire data from the National Down Syndrome Project, a population-based case-control study, we compared the use of folic acid-containing supplements among mothers of infants with full trisomy 21 due to maternal nondisjunction (n=702) and mothers of infants born with no major birth defects (n=983). Using logistic regression, adjusting for maternal age, race/ethnicity, and infant age at maternal interview, we found no evidence of an association between lack of folic acid supplementation and maternal nondisjunction among all case mothers (OR=1.16; 95% CI: 0.90–1.48). In analyses stratified by meiotic stage and maternal age (<35 years or ≥ 35 years), we found an association among older mothers experiencing meiosis II nondisjunction errors (OR=2.00; 95% CI: 1.08–3.71). These data suggest that lack of folic acid supplementation may be associated specifically with MII errors in the aging oocyte. If confirmed, these results could account for inconsistencies among previous studies, as each study sample may vary by maternal age structure and proportion of meiotic errors.