In this report, we present a new strategy for targeting chemotherapeutics to tumors, based on targeting extracellular DNA. A gemcitabine prodrug was synthesized, termed H-gemcitabine, which is composed of Hoechst conjugated to gemcitabine. H-gemcitabine has low toxicity because it is membrane-impermeable; however, it still has high tumor efficacy because of its ability to target gemcitabine to E-DNA in tumors. We demonstrate here that H-gemcitabine has a wider therapeutic window than free gemcitabine.
Background
Hemoglobin C, D Punjab, E or S trait can interfere with hemoglobin A1c (HbA1c) results. We assessed whether they affect results obtained with 12 current assay methods.
Methods
Hemoglobin AA (HbAA), HbAC, HbAD Punjab, HbAE and HbAS samples were analyzed on one enzymatic, nine ion-exchange HPLC and two capillary electrophoresis methods. Trinity ultra2 boronate affinity HPLC was the comparative method. An overall test of coincidence of least-squared linear regression lines was performed to determine if HbA1c results were statistically significantly different from those of HbAA samples. Clinically significant interference was defined as >7% difference from HbAA at 6 or 9% HbA1c compared to ultra2 using Deming regression.
Results
All methods showed statistically significant effects for one or more variants. Clinically significant effects were observed for the Tosoh G8 variant mode and GX (all variants), GX V1.22 (all but HbAE) and G11 variant mode (HbAC). All other methods (Abbott Architect c Enzymatic, Bio-Rad D-100, Variant II NU and Variant II Turbo 2.0, Menarini HA-8180T thalassemia mode and HA-8180V variant mode, Sebia Capillarys 2 and Capillarys 3) showed no clinically significant differences.
Conclusions
Several methods showed clinically significant interference with HbA1c results from one or more variants which could adversely affect patient care.
by
Nattawat Onlamoon;
Jaydip Das Gupta;
Prachi Sharma;
Kenneth Rogers;
Suganthi Suppiah;
Jeanne Rhea;
Ross J Molinaro;
Christina Gaughan;
Beihua Dong;
Eric A. Klein;
Xiaoxing Qiu;
Sushil Devare;
Gerald Schochetman;
John Hackett;
Robert H. Silverman;
Francois Villinger
Xenotropic murine leukemia-related virus (XMRV) was identified in association with human prostate cancer and chronic fatigue syndrome. To examine the infection potential, kinetics, and tissue distribution of XMRV in an animal model, we inoculated five macaques with XMRV intravenously. XMRV established a persistent, chronic disseminated infection, with low transient viremia and provirus in blood lymphocytes during acute infection. Although undetectable in blood after about a month, XMRV viremia was reactivated at 9 months, confirming the chronicity of the infection. Furthermore, XMRV Gag was detected in tissues throughout, with wide dissemination throughout the period of monitoring. Surprisingly, XMRV infection showed organ-specific cell tropism, infecting CD4 T cells in lymphoid organs including the gastrointestinal lamina propria, alveolar macrophages in lung, and epithelial/interstitial cells in other organs, including the reproductive tract. Of note, in spite of the intravenous inoculation, extensive XMRV replication was noted in prostate during acute but not chronic infection even though infected cells were still detectable by fluorescence in situ hybridization (FISH) in prostate at 5 and 9 months postinfection. Marked lymphocyte activation occurred immediately postinfection, but antigen-specific cellular responses were undetectable. Antibody responses were elicited and boosted upon reexposure, but titers decreased rapidly, suggesting low antigen stimulation over time. Our findings establish a nonhuman primate model to study XMRV replication/dissemination, transmission, pathogenesis, immune responses, and potential future therapies.
The newly identified retrovirus—the xenotropic murine leukemia virus-related virus (XMRV)—has recently been shown to be strongly associated with familial prostate cancer in humans (A. Urisman et al., PLoS Pathog. 2:e25, 2006). While that study showed evidence of XMRV infection exclusively in the prostatic stromal fibroblasts, a recent study found XMRV protein antigens mainly in malignant prostate epithelial cells (R. Schlaberg et al., Proc. Natl. Acad. Sci. U. S. A. 106:16351-16356, 2009). To help elucidate the mechanisms behind XMRV infection, we show that prostatic fibroblast cells express Xpr1, a known receptor of XMRV, but its expression is absent in other cell lines of the prostate (i.e., epithelial and stromal smooth muscle cells). We also show that certain amino acid residues located within the predicted extracellular loop (ECL3 and ECL4) sequences of Xpr1 are required for efficient XMRV entry. Although we found strong evidence to support XMRV infection of prostatic fibroblast cell lines via Xpr1, we learned that XMRV was indeed capable of infecting cells that did not necessarily express Xpr1, such as those of the prostatic epithelial and smooth muscle origins. Further studies suggest that the expression of Xpr1 and certain genotypes of the RNASEL gene, which could restrict XMRV infection, may play important roles in defining XMRV tropisms in certain cell types. Collectively, our data reveal important cellular determinants required for XMRV entry into different human prostate cells in vitro, which may provide important insights into the possible role of XMRV as an etiologic agent in human prostate cancer.
Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we have developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a challenging class of glycoconjugates recognized by toxins, antibodies, and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. Fluorescent GSLs were separated by multidimensional chromatography, quantified, and coupled to glass slides to create GSL shotgun microarrays. The microarrays were interrogated with cholera toxin, antibodies, and sera from patients with Lyme disease to identify biologically relevant GSLs that were subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans provides an approach to accessing the complex glycomes of animal cells and offers a strategy for focusing structural analyses on functionally significant glycans.
Context
Laboratory medicine is an integral component of patient care. Approximately 60% to 70% of medical decisions are based on laboratory results. Physicians in specialties that order the tests are teaching medical students laboratory medicine and test use with minimal input from laboratory scientists who implement and maintain the quality control for those tests.
Objective
To develop, implement, and evaluate a 1.5-day medical student clinical laboratory experience for fourth-year medical students in their last month of training.
Design
The experience was devised and directed by laboratory scientists and included a panel discussion, laboratory tours, case studies that focused on the goals and objectives recently published by the Academy of Clinical Laboratory Physicians and Scientists, and medical-student presentations highlighting salient points of the experience. The same knowledge quiz was administered at the beginning and end of the experience and 84 students took both quizzes.
Results
A score of 7 or more was obtained by 16 students (19%) on the initial quiz, whereas 34 (40%) obtained the same score on the final quiz; the improvement was found to be statistically significant (P = .002; t = 3.215), particularly in 3 out of the 10 questions administered.
Conclusions
Although the assessment can only measure a small amount of knowledge recently acquired, the improvement observed by fourth-year medical students devoting a short period to learning laboratory medicine principles was encouraging. This medical student clinical laboratory experience format allowed teaching of a select group of laboratory medicine principles in 1.5 days to an entire medical school class.
by
Prachi Sharma;
Kenneth A. Rogers;
Suganthi Suppiah;
Ross J Molinaro;
Nattawat Onlamoon;
John, Jr. Hackett;
Gerald Schochetman;
Eric A. Klein;
Robert H. Silverman;
Francois Villinger
Although XMRV dissemination in humans is a matter of debate, the prostate of select patients seem to harbor XMRV, which raises questions about its potential route of transmission. We established a model of infection in rhesus macaques inoculated with XMRV. In spite of the intravenous inoculation, all infected macaques exhibited readily detectable XMRV signal in the reproductive tract of all 4 males and 1 female during both acute and chronic infection stages. XMRV showed explosive growth in the acini of prostate during acute but not chronic infection. In seminal vesicles, epididymis, and testes, XMRV protein production was detected throughout infection in interstitial or epithelial cells. In the female monkey, epithelial cells in the cervix and vagina were also positive for XMRV gag. The ready detection of XMRV in the reproductive tract of male and female macaques infected intravenously suggests the potential for sexual transmission for XMRV.
Background
Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV.
Results
Immunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1[ratio]1024 and 1[ratio]464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations.
Conclusions
Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans.
by
Francois Villinger;
Jaydip Das Gupta;
Nattawat Onlamoon;
Ross J Molinaro;
Suganthi Suppiah;
Prachi Sharma;
Kenneth Rogers;
Christian Gaughan;
Eric Klein;
Xiaoxing Qiu;
Gerald Schochetman;
John Hackett;
Robert H. Silverman
The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen-expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group-like antigens on their surface (pages 263-264).