by
Luis E. Munoz;
Lenore Monterroza;
Ramireddy Bommireddy;
Yalda Shafizadeh;
Christopher D. Pack;
Sampath Ramachandiran;
Shaker J. C. Reddy;
Periasamy Selvaraj
Dendritic cells (DCs) are the most effective antigen presenting cells for the development of T cell responses. The only FDA approved DC-based immunotherapy to date is Sipuleucel-T, which utilizes a fusion protein to stimulate DCs ex vivo with GM-CSF and simultaneously deliver the antigen PAP for prostate cancer. This approach is restricted by the breadth of immunity elicited to a single antigen, and to cancers that have a defined tumor associated antigen. Other multiantigen approaches have been restricted by poor efficacy of vaccine adjuvants. We have developed a vaccine platform that consists of autologous DCs pulsed with cytokine-adjuvanted tumor membrane vesicles (TMVs) made from tumor tissue, that encapsulate the antigenic landscape of individual tumors. Here we test the efficacy of DCs pulsed with TMVs incorporated with glycolipid-anchored immunostimulatory molecules (GPI-ISMs) in HER2-positive and triple negative breast cancer murine models. Pulsing of DCs with TMVs containing GPI-ISMs results in superior uptake of vesicles, DC activation and cytokine production. Adaptive transfer of TMV-pulsed DCs to tumor bearing mice results in the inhibition of tumor growth, reduction in lung metastasis, and an increase in immune cell infiltration into the tumors. These observations suggest that DCs pulsed with TMVs containing GPI-GM-CSF and GPI-IL-12 can be further developed to be used as a personalized immunotherapy platform for cancer treatment.
by
Ramireddy Bommireddy;
Shannon Stone;
Noopur Bhatnagar;
Pratima Kumari;
Luis E. Munoz;
Judy Oh;
Ki-Hye Kim;
Jameson T. L. Berry;
Kristen M. Jacobsen;
Lahcen Jaafar;
Swe-Htet Naing;
Allison N. Blackerby;
Tori Van der Gaag;
Chloe N. Wright;
Lilin Lai;
Christopher D. Pack;
Sampath Ramachandiran;
Mehul Suthar;
Sang-Moo Kang;
Mukesh Kumar;
Shaker J. C. Reddy;
Periasamy Selvaraj
Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.
Imaging techniques based on fluorescence and bioluminescence have been important tools in visualizing tumor progression and studying the effect of drugs and immunotherapies on tumor immune microenvironment in animal models of cancer. However, transgenic expression of foreign proteins may induce immune responses in immunocompetent syngeneic tumor transplant models and augment the efficacy of experimental drugs. In this study, we show that the growth rate of Lewis lung carcinoma (LL/2) tumors was reduced after transduction of tdTomato and luciferase (tdTomato/Luc) compared to the parental cell line. tdTomato/Luc expression by LL/2 cells altered the tumor microenvironment by increasing tumor-infiltrating lymphocytes (TILs) while inhibiting tumor-induced myeloid-derived suppressor cells (MDSCs). Interestingly, tdTomato/Luc expression did not alter the response of LL/2 tumors to anti-PD-1 and anti-CTLA-4 antibodies. These results suggest that the use of tdTomato/Luc-transduced cancer cells to conduct studies in immune competent mice may lead to cell-extrinsic tdTomato/Luc-induced alterations in tumor growth and tumor immune microenvironment that need to be taken into consideration when evaluating the efficacy of anticancer drugs and vaccines in immunocompetent animal models.
Immune checkpoint inhibitor (ICI) immunotherapy improved the survival of head and neck squamous cell carcinoma (HNSCC) patients. However, more than 80% of the patients are still resistant to this therapy. To test whether the efficacy of ICI therapy can be improved by vaccine-induced immunity, we investigated the efficacy of a tumor membrane-based vaccine immunotherapy in murine models of HNSCC. The tumors, grown subcutaneously, are used to prepare tumor membrane vesicles (TMVs). TMVs are then incorporated with glycolipid-anchored immunostimulatory molecules GPI-B7-1 and GPI-IL-12 by protein transfer to generate the TMV vaccine.
This TMV vaccine inhibited tumor growth and improved the survival of mice challenged with SCCVII tumor cells. The tumor-free mice survived for several months, remained tumor-free, and were protected following a secondary tumor cell challenge, suggesting that the TMV vaccine induced an anti-tumor immune memory response. However, no synergy with anti-PD1 mAb was observed in this model. In contrast, the TMV vaccine was effective in inhibiting MOC1 and MOC2 murine oral cancer models and synergized with anti-PD1 mAb in extending the survival of tumor-bearing mice. These observations suggest that tumor tissue based TMV vaccines can be harnessed to develop an effective personalized immunotherapy for HNSCC that can enhance the efficacy of immune checkpoint inhibitors.
by
Susan LeGendre-McGhee;
Photini S. Rice;
R. Andrew Wall;
Kyle J. Sprute;
Ramireddy Bommireddy;
Amber M. Luttman;
Raymond B. Nagle;
Edward R. Abril;
Katrina Farrell;
Chiu-Hsieh Hsu;
Denise J. Roe;
Eugene W. Gerner;
Natalia A. Ignatenko;
Jennifer K. Barton
Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.
Transforming growth factor β1 (TGFβ1) is a polypeptide growth factor known to exert multiple functions during development and in the adult stage as well (1-2). TGFβ1 knockout mice are normal at the time of birth and do not exhibit any developmental defect. After one week of birth these mice start developing multifocal inflammatory lesions and eventually die around three weeks of age (3). Further studies revealed that T lymphocytes are the primary effectors in this phenotype (Doetschman, unpublished observation). During T cell development in the thymus, T cell progenitors undergo massive proliferation and around 95% of them undergo apoptosis. Positively selected CD4+ CD8+ double positive T cells undergo thymic selection where cells that recognize self-antigens with high affinity are induced to undergo apoptosis (negative selection) (4-5). Any perturbations in the thymic education process might lead to export of self-reactive T cells to the periphery. In order to find the role of TGFβ1 in preventing the inflammation, we have studied the lymphocyte apoptosis and proliferation.