Purpose: Limited research exists on the time course of long-term retinal and cerebral deficits in diabetic rodents. Previously, we examined short term (4–8 weeks) deficits in the Goto-Kakizaki (GK) rat model of Type II diabetes. Here, we investigated the long-term (1–8 months) temporal appearance of functional deficits (retinal, cognitive, and motor), retinal vascular pathology, and retinal dopamine levels in the GK rat. Methods: In GK rats and Wistar controls, retinal neuronal function (electroretinogram), cognitive function (Y-maze), and motor function (rotarod) were measured at 1, 2, 4, 6, and 8 months of age. In addition, we evaluated retinal vascular function (functional hyperemia) and glucose and insulin tolerance. Retinas from rats euthanized at ≥8 months were assessed for vascular pathology. Dopamine and DOPAC levels were measured via HPLC in retinas from rats euthanized at 1, 2, 8, and 12 months. Results: Goto-Kakizaki rats exhibited significant glucose intolerance beginning at 4 weeks and worsening over time (p < 0.001). GK rats also showed significant delays in flicker and oscillatory potential implicit times (p < 0.05 to p < 0.001) beginning at 1 month. Cognitive deficits were observed beginning at 6 months (p < 0.05), but no motor deficits. GK rats showed no deficits in functional hyperemia and no increase in acellular retinal capillaries. Dopamine levels were twice as high in GK vs. Wistar retinas at 1, 2, 8, and 12 months (p < 0.001). Conclusion: As shown previously, retinal deficits were detectable prior to cognitive deficits in GK rats. While retinal neuronal function was compromised, retinal vascular pathology was not observed, even at 12+ months. High endogenous levels of dopamine in the GK rat may be acting as an anti-angiogenic and providing protection against vascular pathology.
PURPOSE. Electroretinograms (ERGs) are abnormal in diabetic retinas before the appearance of vascular lesions, providing a possible biomarker for diabetic vision loss. Previously, we reported that decreased retinal dopamine (DA) levels in diabetic rodents contributed to early visual and retinal dysfunction. In the current study, we examined whether oscillatory potentials (OPs) could serve as a potential marker for detecting early inner retinal dysfunction due to retinal DA deficiency. METHODS. Retinal function was tested with dark-adapted ERGs, taken at 3, 4, and 5 weeks after diabetes induction with streptozotocin. Electrical responses were analyzed and correlations were made with previously reported retinal DA levels. The effect of restoring systemic DA levels or removing DA from the retina in diabetic mice on OPs was assessed using L-3,4-dihydroxyphenylalanine (L-DOPA) treatments and retina-specific tyrosine hydroxylase (Th) knockout mice (rTHKO), respectively. RESULTS. Diabetic animals had significantly delayed OPs compared to control animals in response to dim, but not bright, flash stimuli. L-DOPA treatment preserved OP implicit time in diabetic mice. Diabetic rTHKO mice had further delayed OPs compared to diabetic mice with normal retinal Th, with L-DOPA treatment also providing benefit. Decreasing retinal DA levels significantly correlated with increasing OP delays mediated by rod pathways. CONCLUSIONS. Our data suggest that inner retinal dysfunction in early-stage diabetes is mediated by rod-pathway deficits and DA deficiencies. OP delays may be used to determine the earliest functional deficits in diabetic retinopathy and to establish an early treatment window for DA therapies that may prevent progressive vision loss.
PURPOSE. Electroretinograms (ERGs) are abnormal in diabetic retinas before the appearance of vascular lesions, providing a possible biomarker for diabetic vision loss. Previously, we reported that decreased retinal dopamine (DA) levels in diabetic rodents contributed to early visual and retinal dysfunction. In the current study, we examined whether oscillatory potentials (OPs) could serve as a potential marker for detecting early inner retinal dysfunction due to retinal DA deficiency. METHODS. Retinal function was tested with dark-adapted ERGs, taken at 3, 4, and 5 weeks after diabetes induction with streptozotocin. Electrical responses were analyzed and correlations were made with previously reported retinal DA levels. The effect of restoring systemic DA levels or removing DA from the retina in diabetic mice on OPs was assessed using L-3,4-dihydroxyphenylalanine (L-DOPA) treatments and retina-specific tyrosine hydroxylase (Th) knockout mice (rTHKO), respectively. RESULTS. Diabetic animals had significantly delayed OPs compared to control animals in response to dim, but not bright, flash stimuli. L-DOPA treatment preserved OP implicit time in diabetic mice. Diabetic rTHKO mice had further delayed OPs compared to diabetic mice with normal retinal Th, with L-DOPA treatment also providing benefit. Decreasing retinal DA levels significantly correlated with increasing OP delays mediated by rod pathways. CONCLUSIONS. Our data suggest that inner retinal dysfunction in early-stage diabetes is mediated by rod-pathway deficits and DA deficiencies. OP delays may be used to determine the earliest functional deficits in diabetic retinopathy and to establish an early treatment window for DA therapies that may prevent progressive vision loss.
The array of medications available for the treatment of hyperglycemia has increased rapidly in the previous decade, and recent investigations have clarified novel mechanisms underlying the antihyperglycemic efficacy of these drugs. This article reviews the mechanisms of action for medications currently approved to treat diabetes mellitus in the United States, with the exception of insulin and its analogs. Finally, it attempts to integrate these mechanisms into the schema of pathophysiological factors that combine to produce hyperglycemia in patients with diabetes mellitus.
Purpose.
Although diabetic retinopathy (DR) is clinically diagnosed based on vascular pathology, diabetic patients with angiographically normal retinas have been found to exhibit subtle defects in vision. This has led to the theory that diabetes-associated metabolic abnormalities directly impair neural retinal function before the development of vasculopathy, thereby resulting in visual deficits. In this study, we sought to delineate the temporal relationship between retinal dysfunction and visual deficits in a rat model of Type 1 diabetes. Moreover, we investigated the relative contribution of retinal dysfunction versus diabetes-induced lens opacity, to the visual deficits found in early-stage DR.
Methods.
Pigmented Long Evans rats were rendered diabetic with streptozotocin (STZ). Control and diabetic rats were assessed across 12 weeks of hyperglycemia for visual function with optokinetic tracking weekly visual acuity and monthly contrast sensitivity, retinal function with dark-adapted electroretinograms (monthly electroretinograms [ERGs]), and cataract formation with slit lamp exam (biweekly).
Results.
Diabetic rats exhibited significantly reduced visual function and delayed ERG responses by 1 month post-STZ. Significant cataracts did not develop until 6 weeks post-STZ. Moreover, increases in lens opacity (r = −0.728) and ERG implicit times (r = −0.615 for rod-dominated response and r = −0.322 for rod/cone mixed response) showed significant correlations with reductions in visual acuity in diabetic rats.
Conclusions.
STZ-induced hyperglycemia reduces visual function, affecting both visual acuity and contrast sensitivity. The data suggest that visual defects found in early-stage DR may initially involve abnormalities of the neural retina and worsen with later development of cataracts.
High-resolution magnetic resonance imaging (MRI) provides non-invasive images of retinal anatomy, physiology and function with depth-resolved laminar resolution. Eye movement and drift, however, could limit high spatial resolution imaging, and anesthetics that minimize eye movement could significantly attenuate retinal function. The aim of this study was to determine the optimal anesthetic preparations to minimize eye movement and maximize visual-evoked retinal response in rats. Eye movements were examined by imaging of the cornea with a charge-coupled device (CCD) camera under isoflurane, urethane, ketamine/xylazine, and propofol anesthesia at typical dosages in rats. Combination of the paralytic pancuronium bromide with isoflurane or ketamine/xylazine anesthesia was also examined for the eye movement studies. Visual-evoked retinal responses were evaluated using full-field electroretinography (ERG) under isoflurane, ketamine/xylazine, urethane, and ketamine/xylazine + pancuronium anesthesia in rats. The degree of eye movement was ranked as follows (from large to small displacement per unit time): i) 1% isoflurane, ii) 2% isoflurane, iii) propofol, iv) ketamine/xylazine, v) urethane, vi) ketamine/xylazine + pancuronium and vii)1% isoflurane + pancuronium. The ketamine/xylazine groups showed larger dark-adapted ERG a- and b-waves than other anesthetics tested. The isoflurane group showed the shortest b-wave implicit times. Photopic ERGs in the ketamine/xylazine groups showed the largest b-waves with the isoflurane group showing slightly shorter implicit times at the higher flash intensities. Oscillatory potentials revealed an early peak in the isoflurane group compared to ketamine/xylazine and urethane groups. Pancuronium did not affect the a- and b-wave, but did increase oscillatory potential amplitudes. Compared to the other anesthetics tested here, ketamine/xylazine + pancuronium was the best combination to minimize eye movement and maximize retinal function. These findings should set the stage for further development and application of high-resolution functional imaging techniques, such as MRI, to study retinal anatomy, physiology and function in anesthetized rats.
Purpose
To evaluate the utility of low luminance stimuli to functionally probe inner retinal rod pathways in the context of diabetes mellitus in both rat and human subjects.
Methods
Inner retinal dysfunction was assessed using oscillatory potential (OP) delays in diabetic rats. Scotopic electroretinograms (ERGs) in response to a series of increasing flash luminances were recorded from streptozotocin (STZ)-treated and control Sprague-Dawley rats after 7, 14, 20, and 29 weeks of hyperglycemia. We then evaluated OP delays in human diabetic subjects with (DR) and without (DM) diabetic retinopathy using the International Society for Clinical Electrophysiology in Vision (ISCEV) standard scotopic protocol and two additional dim test flashes.
Results
Beginning 7 weeks after STZ, OP implicit times in diabetic rats were progressively delayed in response to dim, but not bright stimuli. In many diabetic subjects the standard ISCEV dim flash failed to illicit measureable OPs. However, OPs became measurable using a brighter, nonstandard dim flash (Test Flash 1, −1.43 log cd s/m2), and exhibited prolonged implicit times in the DM group compared with control subjects (CTRL).
Conclusions
Delays in scotopic OP implicit times are an early response to hyperglycemia in diabetic rats. A similar, inner retinal, rod-driven response was detected in diabetic human subjects without diabetic retinopathy, only when a nonstandard ISCEV flash intensity was employed during ERG testing.
Translational Relevance
The addition of a dim stimulus to standard ISCEV flashes with assessment of OP latency during ERG testing may provide a detection method for early retinal dysfunction in diabetic patients.
Type 1 diabetes (T1DM) affects one in every 400 children and adolescents in the US. Due to the limitations of exogenous insulin therapy and whole pancreas transplantation, pancreatic islet transplantation has emerged as a promising therapy for T1DM. However, this therapy is severely limited by donor islet availability and poor islet engraftment and function. We engineered an injectable bio-synthetic, polyethylene glycol-maleimide hydrogel to enhance vascularization and engraftment of transplanted pancreatic islets in a mouse model of T1DM. Controlled presentation of VEGF-A and cell-adhesive peptides within this engineered material significantly improved the vascularization and function of islets delivered to the small bowel mesentery, a metabolically relevant site for insulin release. Diabetic mice receiving islets transplanted in proteolytically degradable hydrogels incorporating VEGF-A exhibited complete reversal of diabetic hyperglycemia with a 40% reduction in the number of islets required. Furthermore, hydrogel-delivered islets significantly improved weight gain, regulation of a glucose challenge, and intra-islet vascularization and engraftment compared to the clinical standard of islet infusion through the hepatic portal vein. This study establishes a simple biomaterial strategy for islet transplantation to promote enhanced islet engraftment and function.