Background: Maternal diet during pregnancy can impact progeny health and disease by influencing the offspring’s gut microbiome and immune development. Gut microbial metabolism generates butyrate, a short-chain fatty acid that benefits intestinal health. Here we assess the effects of antenatal butyrate on the offspring’s gastrointestinal health. We hypothesized that antenatal butyrate supplementation will induce protection against colitis in the offspring. Methods: C57BL/6 mice received butyrate during pregnancy and a series of experiments were performed on their offspring. RNA sequencing was performed on colonic tissue of 3-week-old offspring. Six–8-week-old offspring were subjected to dextran sulfate sodium-induced colitis. Fecal microbiome analysis was performed on the 6–8-week-old offspring. Results: Antenatal butyrate supplementation dampened transcript enrichment of inflammation-associated colonic genes and prevented colonic injury in the offspring. Antenatal butyrate increased the offspring’s stool microbiome diversity and expanded the prevalence of specific gut microbes. Conclusions: Antenatal butyrate supplementation resulted in downregulation of genes in the offspring’s colon that function in inflammatory signaling. In addition, antenatal butyrate supplementation was associated with protection against colitis and an expanded fecal microbiome taxonomic diversity in the offspring. Impact: Dietary butyrate supplementation to pregnant mice led to downregulation of colonic genes involved in inflammatory signaling and cholesterol synthesis, changes in the fecal microbiome composition of the offspring, and protection against experimentally induced colitis in the offspring.These data support the mounting evidence that the maternal diet during pregnancy has enduring effects on the offspring’s long-term health and disease risk.Although further investigations are needed to identify the mechanism of butyrate’s effects on fetal gut development, the current study substantiates the approach of dietary intervention during pregnancy to optimize the long-term gastrointestinal health of the offspring.
While our current knowledge of probiotic interaction in the developing gut remains poorly understood, emerging science is providing greater biological insight into their mechanism of action and therapeutic potential for human disease. Given their beneficial effects, probiotics remain promising agents in neonatal gastrointestinal disorders. Probiotics may restore or supply essential bacterial strains needed for gut maturation and homeostasis, particularly in hosts where this process has been disrupted. Here we highlight the unique characteristics of developing intestinal epithelia with a focus on gut development and colonization as well as the inflammatory propensity of immature epithelia. Additionally, we review potential mechanisms of beneficial probiotic interaction with immature intestinal epithelia including immunomodulation, upregulation of cytoprotective genes, prevention and regulation of apoptosis and maintenance of barrier function. Improved knowledge of gut-probiotic interaction in developing epithelia will allow for a better understanding of how probiotics exert their beneficial effects and help guide their therapeutic use.
An immature intestinal epithelial barrier may predispose infants and children to many intestinal inflammatory diseases, such as infectious enteritis, inflammatory bowel disease, and necrotizing enterocolitis. Understanding the factors that regulate gut barrier maturation may yield insight into strategies to prevent these intestinal diseases. The claudin family of tight junction proteins plays an important role in regulating epithelial paracellular permeability. Previous reports demonstrate that rodent intestinal barrier function matures during the first 3 weeks of life. We show that murine paracellular permeability markedly decreases during postnatal maturation, with the most significant change occurring between 2 and 3 weeks. Here we report for the first time that commensal bacterial colonization induces intestinal barrier function maturation by promoting claudin 3 expression. Neonatal mice raised on antibiotics or lacking the toll-like receptor adaptor protein MyD88 exhibit impaired barrier function and decreased claudin 3 expression. Furthermore, enteral administration of either live or heat-killed preparations of the probiotic Lactobacillus rhamnosus GG accelerates intestinal barrier maturation and induces claudin 3 expression. However, live Lactobacillus rhamnosus GG increases mortality. Taken together, these results support a vital role for intestinal flora in the maturation of intestinal barrier function. Probiotics may prevent intestinal inflammatory diseases by regulating intestinal tight junction protein expression and barrier function. The use of heat-killed probiotics may provide therapeutic benefit while minimizing adverse effects.
by
Jörn-Hendrik Weitkamp;
Michael J. Rosen;
Zhiguo Zhao;
Tatsuki Koyama;
Duke Geem;
Timothy L. Denning;
Michael T. Rock;
Daniel J. Moore;
Melissa D. Halpern;
Pranathi Matta;
Patricia Denning
Background
Gastrointestinal barrier immaturity predisposes preterm infants to necrotizing enterocolitis (NEC). Intraepithelial lymphocytes (IEL) bearing the unconventional T cell receptor (TCR) γδ (γδ IEL) maintain intestinal integrity and prevent bacterial translocation in part through production of interleukin (IL) 17.
Objective
We sought to study the development of γδ IEL in the ileum of human infants and examine their role in NEC pathogenesis. We defined the ontogeny of γδ IEL proportions in murine and human intestine and subjected tcrδ−/− mice to experimental gut injury. In addition, we used polychromatic flow cytometry to calculate percentages of viable IEL (defined as CD3+ CD8+ CD103+ lymphocytes) and the fraction of γδ IEL in surgically resected tissue from infants with NEC and gestational age matched non-NEC surgical controls.
Results
In human preterm infants, the proportion of IEL was reduced by 66% in 11 NEC ileum resections compared to 30 non-NEC controls (p<0.001). While γδ IEL dominated over conventional αβ IEL early in gestation in mice and in humans, γδ IEL were preferential decreased in the ileum of surgical NEC patients compared to non-NEC controls (50% reduction, p<0.05). Loss of IEL in human NEC was associated with downregulation of the Th17 transcription factor retinoic acid-related orphan nuclear hormone receptor C (RORC, p<0.001). TCRδ-deficient mice showed increased severity of experimental gut injury (p<0.05) with higher TNFα expression but downregulation of IL17A.
Conclusion
Complimentary mouse and human data suggest a role of γδ IEL in IL17 production and intestinal barrier production early in life. Specific loss of the γδ IEL fraction may contribute to NEC pathogenesis. Nutritional or pharmacological interventions to support γδ IEL maintenance in the developing small intestine could serve as novel strategies for NEC prevention.
Supplementation of probiotics to very low birth weight (VLBW) infants has been extensively studied, with multiple meta-analyses reporting probiotics decrease the risk of necrotizing enterocolitis (NEC) and death. Despite availability of this evidence, the decision to initiate routine probiotic supplementation to preterm infants continues to be a complex one. There are uncertainties regarding the use of probiotics, including selecting the appropriate product, dose and target population. Additionally, availability of specific probiotic products and regulatory oversight varies by country, raising concerns regarding the safety and efficacy of specific probiotic products. In this review, we summarize the latest evidence on probiotic use in preterm infants and discuss considerations that may help guide clinicians who are considering routine probiotic supplementation.
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in infants born prematurely. After birth, the neonatal gut must acquire a healthy complement of commensal bacteria. Disruption or delay of this critical process, leading to deficient or abnormal microbial colonization of the gut, has been implicated as key risk factor in the pathogenesis of NEC. Conversely, a beneficial complement of commensal intestinal microbiota may protect the immature gut from inflammation and injury. Interventions aimed at providing or restoring a healthy complement of commensal bacteria, such as probiotic therapy, are currently the most promising treatment to prevent NEC. Shifting the balance of intestinal microbiota from a pathogenic to protective complement of bacteria can protect the gut from inflammation and subsequent injury that leads to NEC. Herein, we review the relationship of intestinal microbiota and NEC in preterm infants.
Background
The intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.
Objective: To evaluate if routine supplementation of Lactobacillus rhamnosus GG ATCC 53103 (LGG) is associated with a decreased risk of necrotizing enterocolitis in very low birth weight (VLBW) infants. Study design: Retrospective observational cohort study of VLBW (<1500 g) infants at a single center from 2008 to 2016. LGG supplementation with Culturelle at a dose of 2.5 to 5 × 10 9 CFU/day began in 2014. We used multivariable logistic regression to evaluate the association between LGG supplementation and necrotizing enterocolitis (modified Bell stage IIA or greater), after adjusting for potential confounders. We also compared changes in necrotizing enterocolitis incidence before and after implementation of LGG using a statistical process control chart. Results: We evaluated 640 VLBW infants with a median gestational age of 28.7 weeks (IQR 26.3-30.6); 78 (12%) developed necrotizing enterocolitis. The median age at first dose of LGG was 6 days (IQR 3-10), and duration of supplementation was 32 days (IQR 18-45). The incidence of necrotizing enterocolitis in the epoch before LGG implementation was 10.2% compared with 16.8% after implementation. In multivariable analysis, LGG supplementation was associated with a higher risk of necrotizing enterocolitis (aOR 2.10, 95 % CI 1.25-3.54, P =.005). We found no special cause variation in necrotizing enterocolitis after implementation of LGG supplementation. There were no episodes of Lactobacillus sepsis during 5558 infant days of LGG supplementation. Conclusions: In this study, routine LGG supplementation was not associated with a decreased risk of necrotizing enterocolitis. Our findings do not support the use of the most common probiotic preparation currently supplemented to VLBW infants in the US.
The intestinal microflora is critical for normal development, with aberrant colonization increasing the risk for necrotizing enterocolitis (NEC). In contrast, probiotic bacteria have been shown to decrease its incidence. Multiple pro- and anti-inflammatory cytokines have been identified as markers of intestinal inflammation, both in human patients with NEC and in models of immature intestine. Specifically, IL-10 signaling attenuates intestinal responses to gut dysbiosis, and disruption of this pathway exacerbates inflammation in murine models of NEC. However, the effects of probiotics on IL-10 and its signaling pathway, remain poorly defined. Real-time PCR profiling revealed developmental regulation of MIP-2, TNF-α, IL-12, IL-10 and the IL-10R2 subunit of the IL-10 receptor in immature murine colon, while the expression of IL-6 and IL-18 was independent of postnatal age. Enteral administration of the probiotic Lactobacillus rhamnosus GG (LGG) down-regulated the expression of TNF-α and MIP-2 and yet failed to alter IL-10 mRNA and protein expression. LGG did however induce mRNA expression of the IL-10R2 subunit of the IL-10 receptor. IL-10 receptor activation has been associated with signal transducer and activator of transcription (STAT) 3-dependent induction of members of the suppressors of cytokine signaling (SOCS) family. In 2 week-old mice, LGG also induced STAT3 phosphorylation, increased colonic expression of SOCS-3, and attenuated colonic production of MIP-2 and TNF-α. These LGG-dependent changes in phosphoSTAT3, SOCS3, MIP-2 and TNF-α were all inhibited by antibody-mediated blockade of the IL-10 receptor. Thus LGG decreased baseline proinflammatory cytokine expression in the developing colon through upregulation of IL-10 receptor-mediated signaling, most likely due to the combined induction of phospho-STAT3 and SOCS3. Furthermore, LGG-dependent increases in IL-10R2 were associated with reductions in TNF-α, MIP-2 and disease severity in a murine model of intestinal injury in the immature colon.