Objectives: The aim of this study was to test the hypothesis that transcatheter electrosurgery might allow intentional detachment of previously placed MitraClip(s) from the anterior leaflet to recreate a single mitral orifice for transcatheter mitral valve implantation (TMVI), leaving the retained MitraClip(s) securely fastened to the posterior leaflet and without interfering with the mitral bioprosthesis. Background: Patients with severe mitral regurgitation or stenosis despite edge-to-edge mitral repair with the MitraClip typically have few therapeutic options because the resultant double orifice precludes TMVI. Transcatheter electrosurgery may allow detachment of failed MitraClip(s) from the anterior leaflet to recreate a single orifice for TMVI. Methods: This was a single-center, 5-patient, consecutive, retrospective observational cohort. Patients underwent transcatheter electrosurgical laceration and stabilization of failed MitraClip(s) to recreate a single orifice, leaving the MitraClip(s) securely fastened to the posterior leaflet. Subsequently, patients underwent TMVI with an investigational device, the Tendyne mitral bioprosthesis, on a compassionate basis. Patients were followed up to 30 days. Results: MitraClip detachment from the anterior leaflet and Tendyne implantation were successful in all patients. All patients survived to discharge. All patients were discharged with grade 0 central mitral regurgitation. Two patients had moderate perivalvular mitral regurgitation that did not require reintervention. During the follow-up period of 30 days, there were no deaths, cases of valve dysfunction, or reintervention. There was no evidence of erosion or bioprosthetic valve dysfunction attributable to the retained MitraClip(s) still attached to the posterior leaflet. Conclusions: Transcatheter electrosurgical detachment of failed MitraClips from the anterior leaflet followed by TMVI is technically feasible and safe at 30 days. Longer term study is needed to determine the clinical benefit of this approach and new algorithms for TMVI sizing following electrosurgical laceration and stabilization of a failed MitraClip to avoid perivalvular leak.
Ischemic septal rupture producing an acquired ventricular septal defect (VSD) is a catastrophic complication of acute myocardial infarction. Acute therapeutic options are often futile because the tear in the septum is complex with surrounding edematous and necrotic tissue that evolves over several weeks following infarction. Concomitant left ventricular (LV) and/or right ventricular (RV) dysfunction limit effective surgical repair mostly to survivors of natural selection. “Dedicated” endovascular devices are best suited for the minority of patients with thin septums and small, circular defects during the chronic phase of post-infarct VSD1. In other VSD anatomies, commercially available devices are too rigid to deliver, have an outward force that expands already necrotic defects and are highly permeable, failing to occlude high-flow defects. There is a need for better therapy.