Mapping of cortical functions is critical for the best clinical care of patients undergoing epilepsy and tumor surgery, but also to better understand human brain function and connectivity. The purpose of this review is to explore existing and potential means of mapping higher cortical functions, including stimulation mapping, passive mapping, and connectivity analyses. We examine the history of mapping, differences between subdural and stereoelectroencephalographic approaches, and some risks and safety aspects, before examining different types of functional mapping. Much of this review explores the prospects for new mapping approaches to better understand other components of language, memory, spatial skills, executive, and socio-emotional functions. We also touch on brain-machine interfaces, philosophical aspects of aligning tasks to brain circuits, and the study of consciousness. We end by discussing multi-modal testing and virtual reality approaches to mapping higher cortical functions.
Objective: To evaluate declarative memory outcomes in medically refractory epilepsy patients who underwent either a highly selective laser ablation of the amygdalohippocampal complex or a conventional open temporal lobe resection. Methods: Post-operative change scores were examined for verbal memory outcome in epilepsy patients who underwent stereotactic laser amygdalohippocampotomy (SLAH: n = 40) or open resection procedures (n = 40) using both reliable change index (RCI) scores and a 1-SD change metric. Results: Using RCI scores, patients undergoing open resection (12/40, 30.0%) were more likely to decline on verbal memory than those undergoing SLAH (2/40 [5.0%], p = 0.0064, Fisher's exact test). Patients with language dominant procedures were much more likely to experience a significant verbal memory decline following open resection (9/19 [47.4%]) compared to laser ablation (2/19 [10.5%], p = 0.0293, Fisher's exact test). 1 SD verbal memory decline frequently occurred in the open resection sample of language dominant temporal lobe patients with mesial temporal sclerosis (8/10 [80.0%]), although it rarely occurred in such patients after SLAH (2/14, 14.3%) (p = 0.0027, Fisher's exact test). Memory improvement occurred significantly more frequently following SLAH than after open resection. Interpretation: These findings suggest that while verbal memory function can decline after laser ablation of the amygdalohippocampal complex, it is better preserved when compared to open temporal lobe resection. Our findings also highlight that the dominant hippocampus is not uniquely responsible for verbal memory. While this is at odds with our simple and common heuristic of the hippocampus in memory, it supports the findings of non-human primate studies showing that memory depends on broader medial and lateral TL regions.
by
Nigel P. Pedersen;
Loris Ferrari;
Anne Venner;
Joshua L. Wang;
Stephen B. G. Abbott;
Nina Vujovic;
Elda Arrigoni;
Clifford B. Saper;
Patrick M. Fuller
Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuM vglut2 ) produce sustained behavioral and EEG arousal when chemogenetically activated. This effect is nearly abolished following selective genetic disruption of glutamate release from SuM vglut2 neurons. Inhibition of SuM vglut2 neurons decreases and fragments wake, also suppressing theta and gamma frequency EEG activity. SuM vglut2 neurons include a subpopulation containing both glutamate and GABA (SuM vgat/vglut2 ) and another also expressing nitric oxide synthase (SuM Nos1/Vglut2 ). Activation of SuM vgat/vglut2 neurons produces minimal wake and optogenetic stimulation of SuM vgat/vglut2 terminals elicits monosynaptic release of both glutamate and GABA onto dentate granule cells. Activation of SuM Nos1/Vglut2 neurons potently drives wakefulness, whereas inhibition reduces REM sleep theta activity. These results identify SuM vglut2 neurons as a key node of the wake-sleep regulatory system.
BACKGROUND. Awake neurosurgery requires patients to converse and respond to visual or verbal prompts to identify and protect brain tissue supporting essential functions such as language, primary sensory modalities, and motor function. These procedures can be poorly tolerated because of patient anxiety, yet acute anxiolytic medications typically cause sedation and impair cortical function.
METHODS. In this study, direct electrical stimulation of the left dorsal anterior cingulum bundle was discovered to reliably evoke positive affect and anxiolysis without sedation in a patient with epilepsy undergoing research testing during standard inpatient intracranial electrode monitoring. These effects were quantified using subjective and objective behavioral measures, and stimulation was found to evoke robust changes in local and distant neural activity.
RESULTS. The index patient ultimately required an awake craniotomy procedure to confirm safe resection margins in the treatment of her epilepsy. During the procedure, cingulum bundle stimulation enhanced positive affect and reduced the patient’s anxiety to the point that intravenous anesthetic/anxiolytic medications were discontinued and cognitive testing was completed. Behavioral responses were subsequently replicated in 2 patients with anatomically similar electrode placements localized to an approximately 1-cm span along the anterior dorsal cingulum bundle above genu of the corpus callosum. CONCLUSIONS. The current study demonstrates a robust anxiolytic response to cingulum bundle stimulation in 3 patients with epilepsy.
by
Jerrah K. Holth;
Sarah K. Fritschi;
Chanung Wang;
Nigel Pedersen;
John R. Cirrito;
Thomas E. Mahan;
Mary Beth Finn;
Melissa Manis;
Joel C. Geerling;
Patrick M. Fuller;
Brendan P. Lucey;
David M. Holtzman
The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD). Furthermore, chronic sleep deprivation (SD) increases Ab plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ∼90% during normal wakefulness versus sleep and ∼100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.
The effects of epilepsy and its treatments have contributed significantly to language models. The setting of epilepsy surgery, which allows for careful pre- and postsurgical evaluation of patients with cognitive testing and neuroimaging, has produced a wealth of language findings. Moreover, a new wave of surgical interventions, including stereotactic laser ablation and radio frequency ablation, have contributed new insights and corrections to language models as they can make extremely precise, focal lesions. This review covers the common language deficits observed in focal dyscognitive seizure syndromes. It also addresses the effects of surgical interventions on language, and highlights insights gained from unique epilepsy assessment methods (e.g., cortical stimulation mapping, Wada evaluation). Emergent findings are covered including a lack of involvement of the hippocampus in confrontation word retrieval, possible roles for key white matter tracts in language, and the often-overlooked basal temporal language area. The relationship between language and semantic memory networks is also explored, with brief consideration given to the prevailing models of semantic processing, including the amodal Hub and distributed, multi-modal processing models.
Objective: To evaluate the outcomes 1 year and longer following stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy in a large series of patients treated over a 5-year period since introduction of this novel technique. Methods: Surgical outcomes of a consecutive series of 58 patients with mesial temporal lobe epilepsy who underwent the surgery at our institution with at least 12 months of follow-up were retrospectively evaluated. A subgroup analysis was performed comparing patients with and without mesial temporal sclerosis. Results: One year following stereotactic laser amygdalohippocampotomy, 53.4% (95% confidence interval [CI] = 40.8–65.7%) of all patients were free of disabling seizures (Engel I). Three of 9 patients became seizure-free following repeat ablation. Subgroup analysis showed that 60.5% (95% CI = 45.6–73.7%) of patients with mesial temporal sclerosis were free of disabling seizures as compared to 33.3% (95% CI = 15.0–58.5%) of patients without mesial temporal sclerosis. Quality of Life in Epilepsy-31 scores significantly improved at the group level, few procedure-related complications were observed, and verbal memory outcome was better than historical open resection data. Interpretation: In an unselected consecutive series of patients, stereotactic laser amygdalohippocampotomy yielded seizure-free rates for patients with mesial temporal lobe epilepsy lower than, but comparable to, the outcomes typically associated with open temporal lobe surgery. Analogous to results from open surgery, patients without mesial temporal sclerosis fared less well. This novel procedure is an effective minimally invasive alternative to resective surgery. In the minority of patients not free of disabling seizures, laser ablation presents no barrier to additional open surgery. Ann Neurol 2018;83:575–587.
by
Kirsten A. Porter-Stransky;
Samuel W. Centanni;
Saumya L. Karne;
Lindsay M. Odil;
Sinda Fekir;
Jennifer Wong;
Canaan Jerome;
Heather A. Mitchell;
Andrew Escayg;
Nigel Pedersen;
Danny G. Winder;
Darlene A. Mitrano;
David Weinshenker
Background: Dysregulation of arousal is symptomatic of numerous psychiatric disorders. Previous research has shown that the activity of dopamine (DA) neurons in the ventral periaqueductal gray (vPAG) tracks with arousal state, and lesions of vPAGDA cells increase sleep. However, the circuitry controlling these wake-promoting DA neurons is unknown.
Methods: This study combined designer receptors exclusively activated by designer drugs (DREADDs), behavioral pharmacology, electrophysiology, and immunoelectron microscopy in male and female mice to elucidate mechanisms in the vPAG that promote arousal.
Results: Activation of locus coeruleus projections to the vPAG or vPAGDA neurons induced by DREADDs promoted arousal. Similarly, agonist stimulation of vPAG alpha1-adrenergic receptors (α1ARs) increased latency to fall asleep, whereas α1AR blockade had the opposite effect. α1AR stimulation drove vPAGDA activity in a glutamate-dependent, action potential–independent manner. Compared with other dopaminergic brain regions, α1ARs were enriched on astrocytes in the vPAG, and mimicking α1AR transmission specifically in vPAG astrocytes via Gq-DREADDS was sufficient to increase arousal. In general, the wake-promoting effects observed were not accompanied by hyperactivity.
Conclusions: These experiments revealed that vPAG α1ARs increase arousal, promote glutamatergic input onto vPAGDA neurons, and are abundantly expressed on astrocytes. Activation of locus coeruleus inputs, vPAG astrocytes, or vPAGDA neurons increase sleep latency but do not produce hyperactivity. Together, these results support an arousal circuit whereby noradrenergic transmission at astrocytic α1ARs activates wake-promoting vPAGDA neurons via glutamate transmission.