Background: The human exposome is composed of diverse metabolites and small chemical compounds originated from endogenous and exogenous sources, respectively. Genetic and environmental factors influence metabolite levels, while the extent of genetic contributions across metabolic pathways is not yet known. Untargeted profiling of human metabolome using high-resolution mass spectrometry (HRMS) combined with genome-wide genotyping allows comprehensive identification of genetically influenced metabolites. As such previous studies of adults discovered and replicated genotype–metabotype associations. However, these associations have not been characterized in children. Results: We conducted the largest genome by metabolome-wide association study to date of children (N = 441) using 619,688 common genetic variants and 14,342 features measured by HRMS. Narrow-sense heritability (h2) estimates of plasma metabolite concentrations using genomic relatedness matrix restricted maximum likelihood (GREML) method showed a bimodal distribution with high h2 (> 0.8) for 15.9% of features and low h2 (< 0.2) for most of features (62.0%). The features with high h2 were enriched for amino acid and nucleic acid metabolism, while carbohydrate and lipid concentrations showed low h2. For each feature, a metabolite quantitative trait loci (mQTL) analysis was performed to identify genetic variants that were potentially associated with plasma levels. Fifty-four associations among 29 features and 43 genetic variants were identified at a genome-wide significance threshold p < 3.5 × 10–12 (= 5 × 10–8/14,342 features). Previously reported associations such as UGT1A1 and bilirubin; PYROXD2 and methyl lysine; and ACADS and butyrylcarnitine were successfully replicated in our pediatric cohort. We found potential candidates for novel associations including CSMD1 and a monostearyl alcohol triglyceride (m/z 781.7483, retention time (RT) 89.3 s); CALN1 and Tridecanol (m/z 283.2741, RT 27.6). A gene-level enrichment analysis using MAGMA revealed highly interconnected modules for dADP biosynthesis, sterol synthesis, and long-chain fatty acid transport in the gene-feature network. Conclusion: Comprehensive profiling of plasma metabolome across age groups combined with genome-wide genotyping revealed a wide range of genetic influence on diverse chemical species and metabolic pathways. The developmental trajectory of a biological system is shaped by gene–environment interaction especially in early life. Therefore, continuous efforts on generating metabolomics data in diverse human tissue types across age groups are required to understand gene–environment interaction toward healthy aging trajectories.
Background: The incidence of primary hyperparathyroidism has increased 300% in the United States in the past 30 years, and secondary hyperparathyroidism is almost universal in patients with end-stage renal disease. We assessed the presence of environmental chemicals in human hyperplastic parathyroid tumors as possible contributing factors to this increase. Methods: Cryopreserved hyperplastic parathyroid tumors and normal human parathyroids were analyzed by gas chromatography and liquid chromatography coupled to ultra-high-resolution mass spectrometry, bioinformatics, and biostatistics. Results: Detected environmental chemicals included polychlorinated biphenyls, polybrominated diphenyl ethers, dichloro-diphenyl-trichloroethane derivatives, and other insecticides. A total of 99% had p,p’-dichlorodiphenyldichloroethylene. More than 50% contained other environmental chemicals, and many classified as endocrine disruptors. Polychlorinated biphenyl-28 and polychlorinated biphenyl-49 levels correlated positively with parathyroid tumor mass. Polybrominated diphenyl ether-47 concentrations in tumors were inversely correlated with patients’ serum calcium levels. Cellular metabolites in pathways of purine and pyrimidine synthesis and mitochondrial energy production were associated with tumor growth and with p,p’-dichlorodiphenyldichloroethylene in primary hyperparathyroidism tumors. In normal parathyroids, p,p'-dichlorodiphenyldichloroethylene, polychlorinated biphenyl-28, polychlorinated biphenyl-74, and polychlorinated biphenyl-153, but not p,p'-dichlorodiphenyldichloroethylene or polychlorinated biphenyl-49, were detected. Conclusion: Environmental chemicals are present in human parathyroid tumors and warrant detailed epidemiologic and mechanistic studies to test for causal links to the growth of human parathyroid tumors.
Introduction: Integrating brain imaging with large scale omics data may identify novel mechanisms of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). We integrated and analyzed brain magnetic resonance imaging (MRI) with cerebrospinal fluid (CSF) metabolomics to elucidate metabolic mechanisms and create a “metabolic map” of the brain in prodromal AD. Methods: In 145 subjects (85 cognitively normal controls and 60 with MCI), we derived voxel-wise gray matter volume via whole-brain structural MRI and conducted high-resolution untargeted metabolomics on CSF. Using a data-driven approach consisting of partial least squares discriminant analysis, a multiomics network clustering algorithm, and metabolic pathway analysis, we described dysregulated metabolic pathways in CSF mapped to brain regions associated with MCI in our cohort. Results: The multiomics network algorithm clustered metabolites with contiguous imaging voxels into seven distinct communities corresponding to the following brain regions: hippocampus/parahippocampal gyrus (three distinct clusters), thalamus, posterior thalamus, parietal cortex, and occipital lobe. Metabolic pathway analysis indicated dysregulated metabolic activity in the urea cycle, and many amino acids (arginine, histidine, lysine, glycine, tryptophan, methionine, valine, glutamate, beta-alanine, and purine) was significantly associated with those regions (P < 0.05). Conclusion: By integrating CSF metabolomics data with structural MRI data, we linked specific AD-susceptible brain regions to disrupted metabolic pathways involving nitrogen excretion and amino acid metabolism critical for cognitive function. Our findings and analytical approach may extend drug and biomarker research toward more multiomics approaches.
by
Collynn F. Woeller;
Thomas H. Thatcher;
Juilee Thakar;
Adam Cornwell;
Matthew Smith;
Dean Jones;
Philip K. Hopke;
Patricia J. Sime;
Pamela Krahl;
Timothy M. Mallon;
Richard P. Phipps;
Mark J. Utell
Objective:
Previous work demonstrated that deployment to sites with open burn pits altered serum microRNA (miRNA) levels. Here, we determined if identified deployment-related exposures alter miRNA expression in primary human lung fibroblasts (HLFs).
Methods:
Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were tested for their ability to activate the aryl hydrocarbon receptor (AHR) and induce changes in miRNA. AHR knockdown determined if changes were AHR-dependent.
Results:
HpCDD induced AHR activity in a dose-dependent manner. Four miRNAs linked to occupational open burn pit exposure were altered by HpCDD in HLFs. Knockdown of AHR attenuated changes in miRNA levels.
Conclusions:
These studies confirm that specific miRNAs, previously identified as different in sera from personnel deployed to sites with open burn pits, are altered by HpCDD exposure in human lung cells. HpCDD alters miRNA levels in an AHR dependent manner.
by
Matthew Smith;
R Virk;
N Buddenbaum;
A Al-Shaer;
M Armstrong;
J Manke;
N Reisdorph;
S Sergin;
JI Fenton;
ED Wallace;
BM Ehrmann;
HB Lovins;
KM Gowdy;
SNP Kelada;
SR Shaikh
Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Background: Metabolic differences between human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) and smoking-associated HNSCC may partially explain differences in prognosis. The former relies on mitochondrial oxidative phosphorylation (OXPHOS) while the latter relies on glycolysis. These differences have not been studied in blood. Methods: We extracted metabolites using untargeted liquid chromatography high-resolution mass spectrometry from pretreatment plasma in a cohort of 55 HPV-associated and 82 smoking-associated HNSCC subjects. Metabolic pathway enrichment analysis of differentially expressed metabolites produced pathway-based signatures. Significant pathways (P < 0.05) were reduced via principal component analysis and assessed with overall survival via Cox models. We classified each subject as glycolytic or OXPHOS phenotype and assessed it with survival. Results: Of 2,410 analyzed metabolites, 191 were differentially expressed. Relative to smoking-associated HNSCC, bile acid biosynthesis (P < 0.0001) and octadecatrienoic acid beta-oxidation (P ¼ 0.01), were upregulated in HPV-associated HNSCC, while galactose metabolism (P ¼ 0.001) and vitamin B6 metabolism (P ¼ 0.01) were downregulated; the first two suggest an OXPHOS phenotype while the latter two suggest glycolytic. First principal components of bile acid biosynthesis [HR ¼ 0.52 per SD; 95% confidence interval (CI), 0.38–0.72; P < 0.001] and octadecatrienoic acid beta-oxidation (HR ¼ 0.54 per SD; 95% CI, 0.38–0.78; P < 0.001) were significantly associated with overall survival independent of HPV and smoking. The glycolytic versus OXPHOS phenotype was also independently associated with survival (HR ¼ 3.17; 95% CI, 1.07–9.35; P ¼ 0.04). Conclusions: Plasma metabolites related to glycolysis and mitochondrial OXPHOS may be biomarkers of HNSCC patient prognosis independent of HPV or smoking. Future investigations should determine whether they predict treatment efficacy. Impact: Blood metabolomics may be a useful marker to aid HNSCC patient prognosis.
by
Ryan S Mote;
Nicholas S Hill;
Joseph H Skarlupka;
Jessica M Carpenter;
Jeferson M Lourenco;
Todd R Callaway;
Vilinh T Tran;
Ken Liu;
Matthew Smith;
Dean Jones;
Garret Suen;
Nikolay M Filipov
Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte’s effects on the animal’s microbiota and metabolism were investigated recently, but its effects in planta or on the plant–animal interactions have not been considered. We examined multi-compartment microbiota–metabolome perturbations using multi-‘omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.
Objective:
A study was conducted to identify metabolic-related effects of benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), on primary human fibroblasts to verify biological associations previously found in occupational health research.
Methods:
Human lung fibroblasts were exposed to BghiP or HpCDD and extracts were analyzed with a metabolome-wide association study to test for pathways and metabolites altered relative to controls. Gene expression was measured by quantitative-real time polymerase chain reaction.
Results:
Metabolic perturbations in amino-acid, oxidative stress, and fatty-acid pathways were observed for BghiP and HpCDD. HpCDD but not BghiP exposure increased gene expression of the amino acid transporters SLC7A5 and SLC7A11.
Conclusions:
Exposure to polycyclic aromatic hydrocarbons (PAH) or dioxins perturbs amino acid pathways at physiologically relevant concentrations with different mechanisms. These findings imply an effect on central homeostatic systems by environmental exposures which could have implications on disease susceptibility.
The 1.6 Mb 3q29 deletion is associated with developmental and psychiatric phenotypes, including a 40-fold increased risk for schizophrenia. Reduced birth weight and a high prevalence of feeding disorders in patients suggest underlying metabolic dysregulation. We investigated 3q29 deletion-induced metabolic changes using our previously generated heterozygous B6.Del16+/Bdh1-Tfrc mouse model. Animals were provided either standard chow (STD) or high-fat diet (HFD). Growth curves were performed on HFD mice to assess weight change (n = 30–50/group). Indirect calorimetry and untargeted metabolomics were performed on STD and HFD mice to evaluate metabolic phenotypes (n = 8–14/group). A behavioral battery was performed on STD and HFD mice to assess behavior change after the HFD challenge (n = 5–13/group). We found that B6.Del16+/Bdh1-Tfrc animals preferentially use dietary lipids as an energy source. Untargeted metabolomics of liver tissue showed a strong sex-dependent effect of the 3q29 deletion on fat metabolism. A HFD partially rescued the 3q29 deletion-associated weight deficit in females, but not males. Untargeted metabolomics of liver tissue after HFD revealed persistent fat metabolism alterations in females. The HFD did not affect B6.Del16+/Bdh1-Tfrc behavioral phenotypes, suggesting that 3q29 deletion-associated metabolic and behavioral outcomes are uncoupled. Our data suggest that dietary interventions to improve weight phenotypes in 3q29 deletion syndrome patients are unlikely to exacerbate behavioral manifestations. Our study also highlights the importance of assessing sex in metabolic studies and suggests that mechanisms underlying 3q29 deletion-associated metabolic phenotypes are sex-specific.