Introduction. On-call orthopedic clinicians have long speculated that daily consult volume is closely correlated with weather. While prior studies have demonstrated a relationship between weather and certain fracture types, the effect of weather on total orthopaedic consult volume has not yet been examined. The aim of this study was to investigate this relationship. Methods. We retrospectively reviewed orthopaedic consult data from 405 consecutive days at an urban, level one trauma center. The number, mechanism of injury, and type of consult were collected, along with daily weather data (temperature, wind, and precipitation). Statistical analysis was then performed to determine the relationship between weather and orthopaedic trauma consults. Results. A total of 4543 consults were received during the study period. There was a significant difference in total number of consults between months of the year (p<0.001). A post hoc analysis revealed that this was due to increased volume in the summer months relative to the winter months (i.e., August 13.7 consults/day; January 9.3 consults/day). Average daily temperature and consult volume were also positively correlated (p<0.001, r= 0.30). While there was no significant association between precipitation and total consult volume, when there was over 0.25 inches of rain, there were less penetrating trauma (p=0.034) and motorcycle collision consults (p=0.013). Conclusion. Weather parameters, specifically average temperature and precipitation, were found to be associated with daily orthopedic consult type and volume. Additionally, consult volume varies significantly between months of the year. Because trauma centers are often resource scarce, this is an important relationship to understand for proper resource allocation.
The sport of motocross entails off-road motorcycle racing and is associated with a high incidence of traumatic injury. While prophylactic knee braces are routinely worn, there has been anecdotal concern that brace use is linked to femoral shaft fractures. While this risk remains unreported in the medical literature, preventing this complication has played a role in new commercial knee brace designs. We present two cases in which two motocross riders sustained transverse femoral shaft fractures at the proximal portion of each respective knee brace. The fracture locations measured on anterior-posterior radiograph were 22 and 21.1 cm proximal to the center of the knee, which is also the recommended proximal extent of motocross knee braces. We propose that the rigid knee brace protects the ligamentous knee structures but may focus undue force on the proximal aspect of the brace. New knee brace designs have incorporated features to dissipate the potentially injurious force to prevent femur fracture. While knee braces undoubtedly help prevent ligamentous knee injury, these cases question the safety of standard brace design and highlight the need for further brace development to better protect the patient's bony structures, in addition to the knee joint.
Background
Orthopedic trauma patients face complex pain management needs and are frequently prescribed opioids, leaving them at-risk for prolonged opioid use. To date, post-trauma pain management research has placed little emphasis on individualized risk assessments for misuse and systematically implementing non-pharmacologic pain management strategies. Therefore, a community-academic partnership was formed to design a novel position in the healthcare field (Life Care Specialist (LCS)), who will educate patients on the risks of opioids, tapering usage, safe disposal practices, and harm reduction strategies. In addition, the LCS teaches patients behavior-based strategies for pain management, utilizing well-described techniques for coping and resilience. This study aims to determine the effects of LCS intervention on opioid utilization, pain control, and patient satisfaction in the aftermath of orthopedic trauma.
Methods
In total, 200 orthopedic trauma patients will be randomized to receive an intervention (LCS) or a standard-of-care control at an urban level 1 trauma center. All patients will be assessed with comprehensive social determinants of health and substance use surveys immediately after surgery (baseline). Follow-up assessments will be performed at 2, 6, and 12 weeks postoperatively, and will include pain medication utilization (morphine milligram equivalents), pain scores, and other substance use. In addition, overall patient wellness will be evaluated with objective actigraphy measures and patient-reported outcomes. Finally, a survey of patient understanding of risks of opioid use and misuse will be collected, to assess the influence of LCS opioid education.
Discussion
There is limited data on the role of individualized, multimodal, non-pharmacologic, behavioral-based pain management intervention in opioid-related risk-mitigation in high-risk populations, including the orthopedic trauma patients. The findings from this randomized controlled trial will provide scientific and clinical evidence on the efficacy and feasibility of the LCS intervention. Moreover, the final aim will provide early evidence into which patients benefit most from LCS intervention.