by
Jae-Min Song;
Yeu-Chun Kim;
Aleksandr S. Lipatov;
Marc Pearton;
C. Todd Davis;
Dae-Goon Yoo;
Kyoung-Mi Park;
Li-Mei Chen;
Fu-Shi Quan;
James C. Birchall;
Ruben O. Donis;
Mark R. Prausnitz;
Richard W Compans;
Sang-Moo Kang
A simple method suitable for self-administration of vaccine would improve mass immunization, particularly during a pandemic outbreak. Influenza virus-like particles (VLPs) have been suggested as promising vaccine candidates against potentially pandemic influenza viruses, as they confer long-lasting immunity but are not infectious. We investigated the immunogenicity and protective efficacy of influenza H5 VLPs containing the hemagglutinin (HA) of A/Vietnam/1203/04 (H5N1) virus delivered into the skin of mice using metal microneedle patches and also studied the response of Langerhans cells in a human skin model. Prime-boost microneedle vaccinations with H5 VLPs elicited higher levels of virus-specific IgG1 and IgG2a antibodies, virus-specific antibody-secreting cells, and cytokine-producing cells up to 8 months after vaccination compared to the same antigen delivered intramuscularly. Both prime-boost microneedle and intramuscular vaccinations with H5 VLPs induced similar hemagglutination inhibition titers and conferred 100% protection against lethal challenge with the wild-type A/Vietnam/1203/04 virus 16 weeks after vaccination. Microneedle delivery of influenza VLPs to viable human skin using microneedles induced the movement of CD207+ Langerhans cells toward the basement membrane. Microneedle vaccination in the skin with H5 VLPs represents a promising approach for a self-administered vaccine against viruses with pandemic potential.
The emergence of the swine-origin 2009 influenza pandemic illustrates the need for improved vaccine production and delivery strategies. Skin-based immunization represents an attractive alternative to traditional hypodermic needle vaccination routes. Microneedles (MNs) can deliver vaccine to the epidermis and dermis, which are rich in antigen-presenting cells (APC) such as Langerhans cells and dermal dendritic cells. Previous studies using coated or dissolvable microneedles emphasized the use of inactivated influenza virus or virus-like particles as skin-based vaccines. However, most currently available influenza vaccines consist of solubilized viral protein antigens. Here we test the hypothesis that a recombinant subunit influenza vaccine can be delivered to the skin by coated microneedles and can induce protective immunity. We found that mice vaccinated via MN delivery with a stabilized recombinant trimeric soluble hemagglutinin (sHA) derived from A/Aichi/2/68 (H3) virus had significantly higher immune responses than did mice vaccinated with unmodified sHA. These mice were fully protected against a lethal challenge with influenza virus. Analysis of postchallenge lung titers showed that MN-immunized mice had completely cleared the virus from their lungs, in contrast to mice given the same vaccine by a standard subcutaneous route. In addition, we observed a higher ratio of antigen-specific Th1 cells in trimeric sHA-vaccinated mice and a greater mucosal antibody response. Our data therefore demonstrate the improved efficacy of a skin-based recombinant subunit influenza vaccine and emphasize the advantage of this route of vaccination for a protein subunit vaccine.
Interstitial fluid (ISF) surrounds the cells and tissues of the body. Since ISF has molecular components similar to plasma, as well as compounds produced locally in tissues, it may be a valuable source of biomarkers for diagnostics and monitoring. However, there has not been a comprehensive study to determine the metabolite composition of ISF and to compare it to plasma. In this study, the metabolome of suction blister fluid (SBF), which largely consists of ISF, collected from 10 human volunteers was analyzed using untargeted high-resolution metabolomics (HRM). A wide range of metabolites were detected in SBF, including amino acids, lipids, nucleotides, and compounds of exogenous origin. Various systemic and skin-derived metabolite biomarkers were elevated or found uniquely in SBF, and many other metabolites of clinical and physiological significance were well correlated between SBF and plasma. In sum, using untargeted HRM profiling, this study shows that SBF can be a valuable source of information about metabolites relevant to human health.
This study tests the hypothesis that high-density particle-stabilized emulsion droplets (PEDs) can be designed to use gravity to target specific locations in the eye via suprachoroidal space injection. PEDs contain a core of high-density perfluorodecalin measuring ≤35 μm in diameter surrounded and stabilized by fluorescein-tagged, polystyrene nanoparticles that simulate polymeric drug carriers. A hollow microneedle infuses PEDs into the suprachoroidal space of rabbit eyes in vivo, which are later dissected and imaged to quantify distribution of fluorescent nanoparticles within the suprachoroidal space. With cornea oriented upward, such that gravity should move PEDs toward the back of the eye, up to 50% of nanoparticles are in the most posterior quadrant near the macula immediately after injection and 5 d later. With cornea oriented downward, to promote PED movement toward the front of the eye, approximately 60% of injected nanoparticles are targeted to the most anterior quadrant of the posterior segment near ciliary body. Injection of approximately neutral-density particles of the same size shows approximately equal distribution throughout the posterior segment. This study demonstrates for the first time that high-density PEDs can be used to deliver nanoparticles to specific locations in the back of the eye, including targeted delivery to the macula.
Purpose: Methods of injection into the suprachoroidal space (SCS) have been developed for larger animals and humans, but reliable administration to the SCS of rodents remains challenging given their substantially smaller eyes. Here, we developed microneedle (MN)-based injectors for SCS delivery in rats and guinea pigs. Methods: We optimized key design features, including MN size and tip characteristics, MN hub design, and eye stabilization, to maximize injection reliability. Performance of the injection technique was characterized in rats (n = 13) and guinea pigs (n = 3) in vivo using fundoscopy and histological examinations to validate targeted SCS delivery. Results: To enable SCS injection across the thin rodent sclera, the injector featured an ultrasmall, hollow MN measuring 160 μm in length for rats and 260 μm for guinea pigs. To control MN interaction with the scleral surface, we incorporated a three-dimensional (3D) printed needle hub to restrict scleral deformation at the injection site. A MN tip outer diameter of 110 μm and bevel angle of 55° optimized insertion without leakage. Additionally, a 3D printed probe was used to secure the eye by applying gentle vacuum. Injectionbythistechniquetook1minute to perform,was conducted without an operating microscope, and yielded a 100% success rate (19 of 19) of SCS delivery determined by fundoscopy and histology. A 7-day safety study revealed no notable adverse ocular effects. Conclusions: We conclude that this simple, targeted, and minimally invasive injection technique can enable SCS injection in rats and guinea pigs. Translational Relevance: This MN injector for rats and guinea pigs will expand and expedite preclinical investigations involving SCS delivery.
The sweat test is the gold standard for the diagnosis of cystic fibrosis (CF). The test utilizes iontophoresis to administer pilocarpine to the skin to induce sweating for measurement of chloride concentration in sweat. However, the sweat test procedure needs to be conducted in an accredited lab with dedicated instrumentation, and it can lead to inadequate sweat samples being collected in newborn babies and young children due to variable sweat production with pilocarpine iontophoresis. We tested the feasibility of using microneedle (MN) patches as an alternative to iontophoresis to administer pilocarpine to induce sweating. Pilocarpine-loaded MN patches were developed. Both MN patches and iontophoresis were applied on horses to induce sweating. The sweat was collected to compare the sweat volume and chloride concentration. The patches contained an array of 100 MNs measuring 600 μm long that were made of water-soluble materials encapsulating pilocarpine nitrate. When manually pressed to the skin, the MN patches delivered >0.5 mg/cm2 pilocarpine, which was double that administered by iontophoresis. When administered to horses, MN patches generated the same volume of sweat when normalized to drug dose and more sweat when normalized to skin area compared to iontophoresis using a commercial device. Moreover, both MN patches and iontophoresis generated sweat with comparable chloride concentration. These results suggest that administration of pilocarpine by MN patches may provide a simpler and more-accessible alternative to iontophoresis for performing a sweat test for the diagnosis of CF.
Microneedle (MN) patches enable simple self-administration of drugs via the skin. In this study, we sought to deliver drug-loaded microspheres (MSs) using MN patches and found that the poly(lactic-co-glycolic acid) (PLGA) MSs failed to localize in the MN tips during fabrication, thereby decreasing their delivered dose and delivery efficiency into skin. We determined that surface interactions between the hydrophobic MSs and the poly(dimethylsiloxane) (PDMS) mold caused MSs to adhere to the mold surface during casting in aqueous formulations, with hydrophobic interactions largely responsible for adhesion. Further studies with polystyrene MSs that similarly carry a negative charge like the PLGA MSs demonstrated both repulsive electrostatic interactions as well as adhesive hydrophobic interactions. Reducing hydrophobic interactions by addition of a surfactant or modifying mold surface properties increased MS loading into MN tips and delivery into porcine skin ex vivo by 3-fold. We conclude that surface interactions affect the loading of hydrophobic MSs into MN patches during aqueous fabrication procedures and that their modulation with the surfactant can increase loading and delivery efficiency.
The authors wish to report the following clarification in the Methods section of this article: a subset of rats used in this study was treated with one of two scleral crosslinking agents: either methylene blue with photoactivation [n = 22] (see Gerberich et al., 2021), or genipin [n = 23] (per Hannon et al., 2019). We further report that hypertensive animals treated with scleral crosslinking agents showed no difference in ERG b-wave amplitude (P = 0.183) or peak IOP (P = 0.177) compared to rats that did not receive scleral crosslinking (n = 29). Thus, these scleral crosslinking treatments had no significant effects on the parameters used to define the ischemic exclusion criteria and do not alter the conclusions of the paper.
In a phase 1 randomized, single-center clinical trial, inactivated influenza virus vaccine delivered through dissolvable microneedle patches (MNPs) was found to be safe and immunogenic. Here, we compare the humoral and cellular immunologic responses in a subset of participants receiving influenza vaccination by MNP to the intramuscular (IM) route of administration. We collected serum, plasma, and peripheral blood mononuclear cells in 22 participants up to 180 days post-vaccination. Hemagglutination inhibition (HAI) titers and antibody avidity were similar after MNP and IM vaccination, even though MNP vaccination used a lower antigen dose. MNPs generated higher neuraminidase inhibition (NAI) titers for all three influenza virus vaccine strains tested and triggered a larger percentage of circulating T follicular helper cells (CD4 + CXCR5 + CXCR3 + ICOS + PD-1+) compared to the IM route. Our study indicates that inactivated influenza virus vaccination by MNP produces humoral and cellular immune response that are similar or greater than IM vaccination.
by
Eric Felner;
Mark Prausnitz;
A Romanyuk;
R Wang;
A Marin;
BMM Janus;
D Xia;
Y Goez-Gazi;
KJJ Alfson;
ASS Yunus;
EAA Toth;
G Ofek;
R Carrion Jr;
TRR Fuerst;
AKK Andrianov
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.