Homeostatic regulation is essential for the maintenance of synaptic strength within the physiological range. The current study is the first to demonstrate that both induction and reversal of homeostatic upregulation of synaptic vesicle release can occur within seconds of blocking or unblocking acetylcholine receptors at the mouse neuromuscular junction. Our data suggest that the homeostatic upregula-tion of release is due to Ca2+-dependent increase in the size of the readily releasable pool (RRP). Blocking vesicle refilling prevented upregulation of quantal content (QC), while leaving baseline release relatively unaffected. This suggested that the upregulation of QC was due to mobilization of a distinct pool of vesicles that were rapidly recycled and thus were dependent on continued vesicle refilling. We term this pool the “homeostatic reserve pool.” A detailed analysis of the time course of vesicle release triggered by a presynaptic action potential suggests that the homeostatic reserve pool of vesicles is normally released more slowly than other vesicles, but the rate of their release becomes similar to that of the major pool during homeostatic upregulation of QC. Remarkably, instead of finding a generalized increase in the recruitment of vesicles into RRP, we identified a distinct homeostatic reserve pool of vesicles that appear to only participate in synchronized release following homeostatic upregulation of QC. Once this small pool of vesicles is depleted by the block of vesicle refilling, homeostatic upregulation of QC is no longer observed. This is the first identification of the population of vesicles responsible for the blockade-induced upregulation of release previously described.
Hereditary Canine Spinal Muscular Atrophy (HCSMA) is an autosomal dominant disorder of motor neurons that shares features with human motor neuron disease. In animals exhibiting the accelerated phenotype (homozygotes), we demonstrated previously that many motor units exhibit functional deficits that likely reflect underlying deficits in neurotransmission. The drug 4-aminopyridine (4AP) blocks voltage-dependent potassium conductances and is capable of increasing neurotransmission by overcoming axonal conduction block or by increasing transmitter release. In this study, we determined whether and to what extent 4AP could enhance muscle force production in HCSMA. Systemic 4AP (1-2 mg/kg) increased nerve-evoked whole muscle twitch force and electromyograms (EMG) to a greater extent in older homozygous animals than in similarly aged, symptomless HCSMA animals or in one younger homozygous animal. The possibility that this difference was caused by the presence of failing motor units in the muscles from homozygotes was tested directly by administering 4AP while recording force produced by failing motor units. The results showed that the twitch force and EMG of failing motor units could be significantly increased by 4AP, whereas no effect was observed in a nonfailing motor unit from a symptomless, aged- matched HCSMA animal. The ability of 4AP to increase force in failing units may be related to the extent of failure. Although 4AP increased peak forces during unit tetanic activation, tetanic force failure was not eliminated. These results demonstrate that the force outputs of failing motor units in HCSMA homozygotes can be increased by 4AP. Possible sites of 4AP action are considered.
It has been shown previously in a number of systems that after an extended block of activity, synaptic strength is increased. We found that an extended block of synaptic activity at the mouse neuromuscular junction, using a tetrodotoxin cuff in vivo, increased synaptic strength by prolonging the evoked endplate current (EPC) decay. Prolongation of EPC decay was accompanied by only modest prolongation of spontaneous miniature EPC (MEPC) decay. Prolongation of EPC decay was reversed when quantal content was lowered by reducing extracellular calcium. These findings suggested that the cause of EPC prolongation was presynaptic in origin. However, when we acutely inhibited fetal-type acetylcholine receptors (AChRs) using a novel peptide toxin (αA-conotoxin OIVA[K15N]), prolongation of both EPC and MEPC decay were reversed. We also blocked synaptic activity in a mutant strain of mice in which persistent muscle activity prevents upregulation of fetal-type AChRs. In these mice, there was no prolongation of EPC decay. We conclude that upregulation of fetal-type AChRs after blocking synaptic activity causes modest prolongation of MEPC decay that is accompanied by much greater prolongation of EPC decay. This might occur if acetylcholine escapes from endplates and binds to extrajunctional fetal-type AChRs only during large, evoked EPCs. Our study is the first to demonstrate a functional role for upregulation of extrajunctional AChRs.
Interneuronal gap junctional coupling is a hallmark of neural development whose functional significance is poorly understood. We have characterized the extent of electrical coupling and dye coupling and patterns of gap junction protein expression in lumbar spinal motor neurons of neonatal rats. Intracellular recordings showed that neonatal motor neurons are transiently electrically coupled and that electrical coupling is reversibly abolished by halothane, a gap junction blocker. Iontophoretic injection of Neurobiotin, a low molecular weight compound that passes across most gap junctions, into single motor neurons resulted in clusters of many labeled motor neurons at postnatal day 0 (P0)-P2, and single labeled motor neurons after P7. The compact distribution of dye-labeled motor neurons suggested that, after birth, gap junctional coupling is spatially restricted. RT-PCR, in situ hybridization, and immunostaining showed that motor neurons express five connexins, Cx36, Cx37, Cx40, Cx43, and Cx45, a repertoire distinct from that expressed by other neurons or gila. Although all five connexins are widely expressed among motor neurons in embryonic and neonatal life, Cx36, Cx37, and Cx43 continue to be expressed in many adult motor neurons, and expression of Cx45, and in particular Cx40, decreases after birth. The disappearance of electrical and dye coupling despite the persistent expression of several gap junction proteins suggests that gap junctional communication among motor neurons may be modulated by mechanisms that affect gap junction assembly, permeability, or open state.
Neonatal spinal motor neurons are electrically and dye-coupled by gap junctions, but coupling is transient and disappears rapidly after birth. Here we report that adult motor neurons become recoupled by gap junctions after peripheral nerve injury. One and 4-6 weeks after nerve cut, clusters of dye- coupled motor neurons were observed among axotomized, but not control, lumbar spinal motor neurons in adult cats. Electrical coupling was not apparent, probably because of the electrotonic distance between dendrodendritic gap junctions and the somatic recording location. Analyses of gap junction protein expression in cat and rat showed that the repertoire of connexins expressed by normal adult motor neurons, Cx36, Cx37, Cx40, Cx43, and Cx45, was unchanged after axotomy. Our results suggest that the reestablishment of gap junctional coupling among axotomized adult motor neurons may occur by modulation of existing gap junction proteins that are constitutively expressed by motor neurons. After injury, interneuronal gap junctional coupling may mediate signaling that maintains the viability of axotomized motor neurons until synaptic connections are reestablished within their targets.
Peripheral nerve crush initiates a robust increase in transmission strength at spinal synapses made by axotomized group IA primary sensory neurons. To study the injury signal that initiates synaptic enhancement in vivo, we designed experiments to manipulate the enlargement of EPSPs produced in spinal motoneurons (MNs) by IA afferents 3 d after nerve crush in anesthetized adult rats. If nerve crush initiates IA EPSP enlargement as proposed by reducing impulse-evoked transmission in crushed IA afferents, then restoring synaptic activity should eliminate enlargement. Daily electrical stimulation of the nerve proximal to the crush site did, in fact, eliminate enlargement but was, surprisingly, just as effective when the action potentials evoked in crushed afferents were prevented from propagating into the spinal cord. Consistent with its independence from altered synaptic activity, we found that IA EPSP enlargement was also eliminated by colchicine blockade of axon transport in the crushed nerve. Together with the observation that colchicine treatment of intact nerves had no short-term effect on IA EPSPs, we conclude that enhancement of IA-MN transmission is initiated by some yet to be identified positive injury signal generated independent of altered synaptic activity. The results establish a new set of criteria that constrain candidate signaling molecules in vivo to ones that develop quickly at the peripheral injury site, move centrally by axon transport, and initiate enhanced transmission at the central synapses of crushed primary sensory afferents through a mechanism that can be modulated by action potential activity restricted to the axons of crushed afferents.
This study examined whether activity is a contributing factor to motor terminal degeneration in mice that overexpress the G93A mutation of the SOD1 enzyme found in humans with inherited motor neuron disease. Previously, we showed that overload of muscles accomplished by synergist denervation accelerated motor terminal degeneration in dogs with hereditary canine spinal muscular atrophy (HCSMA). In the present study, we found that SOD1 plantaris muscles overloaded for 2 months showed no differences of neuromuscular junction innervation status when compared with normally loaded, contralateral plantaris muscles. Complete elimination of motor terminal activity using blockade of sciatic nerve conduction with tetrodotoxin cuffs for 1 month also produced no change of plantaris innervation status. To assess possible effects of activity on motor terminal function, we examined the synaptic properties of SOD1 soleus neuromuscular junctions at a time when significant denervation of close synergists had occurred as a result of natural disease progression. When examined in glucose media, SOD1 soleus synaptic properties were similar to wildtype. When glycolysis was inhibited and ATP production limited to mitochondria, however, blocking of evoked synaptic transmission occurred and a large increase in the frequency of spontaneous mEPCs was observed. Similar effects were observed at neuromuscular junctions in muscle from dogs with inherited motor neuron disease (HCSMA), although significant defects of synaptic transmission exist at these neuromuscular junctions when examined in glucose media, as reported previously. These results suggest that glycolysis compensates for mitochondrial dysfunction at motor terminals of SOD1 mice and HCSMA dogs. This compensatory mechanism may help to support resting and activity-related metabolism in the presence of dysfunctional mitochondria and prolong the survival of SOD1 motor terminals.
In several animal models of motor neuron disease, degeneration begins in the periphery. Clarifying the possible role of Schwann cells remains a priority. We recently showed that terminal Schwann cells (TSCs) exhibit abnormalities in postnatal mice that express mutations of the SOD1 enzyme found in inherited human motor neuron disease. TSC abnormalities appeared before disease-related denervation commenced and the extent of TSC abnormality at P30 correlated with the extent of subsequent denervation. Denervated neuromuscular junctions (NMJs) were also observed that lacked any labeling for TSCs. This suggested that SOD1 TSCs may respond differently than wildtype TSCs to denervation which remain at denervated NMJs for several months. In the present study, the response of SOD1 TSCs to experimental denervation was examined. At P30 and P60, SC-specific S100 labeling was quickly lost from SOD1 NMJs and from preterminal regions. Evidence indicates that this loss eventually becomes complete at most SOD1 NMJs before reinnervation occurs. The loss of labeling was not specific for S100 and did not depend on loss of activity. Although some post-denervation labeling loss occurred at wildtype NMJs, this loss was never complete. Soon after denervation, large cells appeared near SOD1 NMJ bands which colabeled for SC markers as well as for activated caspase-suggesting that distal SOD1 SCs may experience cell death following denervation. Denervated SOD1 NMJs viewed 7 days after denervation with the electron microscope confirmed the absence of TSCs overlying endplates. These observations demonstrate that SOD1 TSCs and distal SCs respond abnormally to denervation. This behavior can be expected to hinder reinnervation and raises further questions concerning the ability of SOD1 TSCs to support normal functioning of motor terminals.
Available evidence supports the idea that muscle fibres provide retrograde signals that enable the expression of adult motoneuron electrical properties but the mechanisms remain unknown. We showed recently that when acetylcholine receptors are blocked at motor endplates, the electrical properties of rat motoneurons change in a way that resembles changes observed after axotomy. This observation suggests that receptor blockade and axotomy interrupt the same signalling mechanisms but leaves open the possibility that the loss of muscle fibre activity underlies the observed effects. To address this issue, we examined the electrical properties of axotomized motoneurons following reinnervation. Ordinarily, these properties return to normal following reinnervation and re-activation of muscle, but in this study muscle fibre activity and evoked acetylcholine release were prevented during reinnervation by blocking axonal conduction. Under these conditions, the properties of motoneurons that successfully reinnervated muscle fibres recovered to normal despite the absence of muscle fibre activity and evoked release. We conclude that the expression of motoneuron electrical properties is not regulated by muscle fibre activity but rather by a retrograde signalling system coupled to activation of endplate acetylcholine receptors. Our results indicate that spontaneous release of acetylcholine from regenerated motor terminals is sufficient to operate the system.
Background
Motor neuron degeneration in SOD1G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers.
Methodology/Principal Findings
Hindlimb muscles were transplanted between wild-type and SOD1G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles.
Conclusions/Significance
These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient.