Cathepsins K and V are powerful elastases elevated in endothelial cells by tumor necrosis factor-α (TNFα) stimulation and disturbed blood flow both of which contribute to inflammation-mediated arterial remodeling. However, mechanisms behind endothelial cell integration of biochemical and biomechanical cues to regulate cathepsin production are not known. To distinguish these mechanisms, human aortic endothelial cells (HAECs) were stimulated with TNFα and exposed to pro-remodeling or vasoprotective shear stress profiles. TNFα upregulated cathepsin K via JNK/c-jun activation, but vasoprotective shear stress inhibited TNFα-stimulated cathepsin K expression. JNK/c-jun were still phosphorylated, but cathepsin K mRNA levels were significantly reduced to almost null indicating separate biomechanical regulation of cathepsin K by shear stress separate from biochemical stimulation. Treatment with Bay 11-7082, an inhibitor of IκBα phosphorylation, was sufficient to block induction of cathepsin K by both pro-remodeling shear stress and TNFα, implicating NF-κB as the biomechanical regulator, and its protein levels were reduced in HAECs by vasoprotective shear stress. In conclusion, NF-κB and AP-1 activation were necessary to activate cathepsin K expression in endothelial cells, highlighting integration of biochemical and biomechanical stimuli to control cathepsins K and V, powerful elastases implicated for arterial remodeling due to chronic inflammation and disturbed blood flow.
by
Christian P Rivera;
Li Li;
Shuangyi Cai;
Nui Pei;
George E McAlear;
Keval Bollavaram;
Oluwasanmi Ariyo;
Victor O Omojola;
Hannah Song;
Andrea L Alfonso;
Wenchang Tan;
Yunlong Huo;
Manu Platt
To define morphological changes in carotid and cerebral arteries in sickle cell transgenic mice (SS) as they age, a combination of ultrasound and microcomputed tomography of plastinated arteries was used to quantify arterial dimensions and changes in mice 4, 12, and 24 weeks of age. 12-week SS mice had significantly larger common carotid artery diameters than AS mice, which continued through to the extracranial and intracranial portions of the internal carotid artery (ICA). There were also side specific differences in diameters between the left and right vessels. Significant ICA tapering along its length occurred by 12- and 24-weeks in SS mice, decreasing by as much as 70%. Significant narrowing along the length was also measured in SS anterior cerebral arteries at 12- and 24-weeks, but not AS. Collectively, these findings indicate that sickle cell anemia induces arterial remodeling in 12- and 24-weeks old mice. Catalog of measurements are also provided for the common carotid, internal carotid, anterior cerebral, and middle cerebral arteries for AS and SS genotypes, as a reference for other investigators using mathematical and computational models of age-dependent arterial complications caused by sickle cell anemia.
by
Hannah Song;
Philip M Keegan;
Suhaas Anbazhakan;
Christian P Rivera;
Yundi Feng;
Victor O Omojola;
Alexus A Clark;
Shuangyi Cai;
Jade Selma;
Rudolph L Gleason;
Edward Botchwey;
Yunlong Huo;
Wenchang Tan;
Manu Platt
Objective: Sickle cell anemia (SCA) causes chronic inflammation and multiorgan damage. Less understood are the arterial complications, most evident by increased strokes among children. Proteolytic mechanisms, biomechanical consequences, and pharmaceutical inhibitory strategies were studied in a mouse model to provide a platform for mechanistic and intervention studies of large artery damage due to sickle cell disease. Approach and Results: Townes humanized transgenic mouse model of SCA was used to test the hypothesis that elastic lamina and structural damage in carotid arteries increased with age and was accelerated in mice homozygous for SCA (sickle cell anemia homozygous genotype [SS]) due to inflammatory signaling pathways activating proteolytic enzymes. Elastic lamina fragmentation observed by 1 month in SS mice compared with heterozygous littermate controls (sickle cell trait heterozygous genotype [AS]). Positive immunostaining for cathepsin K, a powerful collagenase and elastase, confirmed accelerated proteolytic activity in SS carotids. Larger cross-sectional areas were quantified by magnetic resonance angiography and increased arterial compliance in SS carotids were also measured. Inhibiting JNK (c-jun N-terminal kinase) signaling with SP600125 significantly reduced cathepsin K expression, elastin fragmentation, and carotid artery perimeters in SS mice. By 5 months of age, continued medial thinning and collagen degradation was mitigated by treatment of SS mice with JNK inhibitor. Conclusions: Arterial remodeling due to SCA is mediated by JNK signaling, cathepsin proteolytic upregulation, and degradation of elastin and collagen. Demonstration in Townes mice establishes their utility for mechanistic studies of arterial vasculopathy, related complications, and therapeutic interventions for large artery damage due to SCA.
Fibrin is an extracellular matrix protein that is responsible for maintaining the structural integrity of blood clots. Much research has been done on fibrin in the past years to include the investigation of synthesis, structure-function, and lysis of clots. However, there is still much unknown about the morphological and structural features of clots that ensue from patients with disease. In this research study, experimental techniques are presented that allow for the examination of morphological differences of abnormal clot structures due to diseased states such as diabetes and sickle cell anemia. Our study focuses on the preparation and evaluation of fibrin clots in order to assess morphological differences using various experimental assays and confocal microscopy. In addition, a method is also described that allows for continuous, real-time calculation of lysis rates in fibrin clots. The techniques described herein are important for researchers and clinicians seeking to elucidate comorbid thrombotic pathologies such as myocardial infarctions, ischemic heart disease, and strokes in patients with diabetes or sickle cell disease.
Children with congenital heart diseases have increased morbidity and mortality, despite various surgical treatments, therefore warranting better treatment strategies. Here we investigate the role of age of human pediatric cardiac progenitor cells (hCPCs) on ventricular remodeling in a model of juvenile heart failure. hCPCs isolated from children undergoing reconstructive surgeries were divided into 3 groups based on age: neonate (1 day to 1month), infant (1month to 1 year), and child (1 to 5 years). Adolescent athymic rats were subjected to sham or pulmonary artery banding surgery to generate a model of right ventricular (RV) heart failure. Two weeks after surgery, hCPCs were injected in RV musculature noninvasively. Analysis of cardiac function4weekspost-transplantationdemonstratedsignificantly increased tricuspid annular plane systolic excursion and RV ejection fraction and significantly decreased wall thickness and fibrosis in rats transplanted with neonatal hCPCs compared with saline-injected rats. Computational modeling and systems biology analysis were performed on arrays and gave insights into potential mechanisms at the microRNA and gene level. Mechanisms including migration and proliferation assays, as suggested by computational modeling, showed improved chemotactic and proliferative capacity of neonatal hCPCs compared with infant/child hCPCs. In vivo immune staining further suggested increased recruitment of stem cell antigen 1-positive cells in the right ventricle. This is the first study to assess the role of hCPC age in juvenile RV heart failure. Interestingly, the reparative potential of hCPCs is age-dependent, with neonatal hCPCs exerting the maximum beneficial effect compared with infant and child hCPCs.
Sickle cell disease (SCD) is the most common hereditary blood disorder in the United States. SCD is frequently associated with osteonecrosis, osteoporosis, osteopenia, and other bone-related complications such as vaso-occlusive pain, ischemic damage, osteomyelitis, and bone marrow hyperplasia known as sickle bone disease (SBD). Previous SBD models have failed to distinguish the age- and sex-specific characteristics of bone morphometry. In this study, we use the Townes mouse model of SCD to assess the pathophysiological complications of SBD in both SCD and sickle cell trait. Changes in bone microarchitecture and bone development were assessed by using high-resolution quantitative micro–computed tomography and the three-dimensional reconstruction of femurs from male and female mice. Our results indicate that SCD causes bone loss and sex-dependent anatomical changes in bone. SCD female mice in particular are prone to trabecular bone loss, whereas cortical bone degradation occurs in both sexes. We also describe the impact of genetic knockdown of cathepsin K– and E-64–mediated cathepsin inhibition on SBD.
Throughout the process of vascular growth and remodeling, the extracellular matrix (ECM) concurrently undergoes significant changes due to proteolytic activity-regulated by both endothelial and surrounding stromal cells. The role of matrix metalloproteinases has been well-studied in the context of vascular remodeling, but other proteases, such as cysteine cathepsins, could also facilitate ECM remodeling. To investigate cathepsin-mediated proteolysis in vascular ECM remodeling, and to understand the role of shear flow in this process, in vitro microvessels were cultured in previously designed microfluidic chips and assessed by immunostaining, zymography, and western blotting. Primary human vessels (HUVECs and fibroblasts) were conditioned by continuous fluid flow and/or small molecule inhibitors to probe cathepsin expression and activity. Luminal flow (in contrast to static culture) decreases the activity of cathepsins in microvessel systems, despite a total protein increase, due to a concurrent increase in the endogenous inhibitor cystatin C. Observations also demonstrate that cathepsins mostly co-localize with fibroblasts, and that fibrin (the hydrogel substrate) may stabilize cathepsin activity in the system. Inhibitor studies suggest that control over cathepsin-mediated ECM remodeling could contribute to improved maintenance of in vitro microvascular networks; however, further investigation is required. Understanding the role of cathepsin activity in in vitro microvessels and other engineered tissues will be important for future regenerative medicine applications.
Major advances in highly active antiretroviral therapies (HAART) have extended the lives of people living with HIV, but there still remains an increased risk of death by cardiovascular diseases (CVD). HIV proteins have been shown to contribute to cardiovascular dysfunction with effects on the different cell types that comprise the arterial wall. In particular, HIV-1 transactivating factor (Tat) has been shown to bind to endothelial cells inducing a range of responses that contribute to vascular dysfunction. It is well established that hemodynamics also play an important role in endothelial cell mediated atherosclerotic development. When exposed to low or oscillatory shear stress, such as that found at branches and bifurcations, endothelial cells contribute to proteolytic vascular remodeling by upregulating cathepsins, potent elastases and collagenases that contribute to altered biomechanics and plaque formation. Mechanisms to understand the influence of Tat on shear stress mediated vascular remodeling have not been fully elucidated. Using an in vivo HIV-Tg mouse model and an in vitro cone and plate shear stress bioreactor to actuate physiologically relevant pro-atherogenic or atheroprotective shear stress on human aortic endothelial cells, we have shown synergism between HIV proteins and pro-atherogenic shear stress to increase endothelial cell expression of the powerful protease cathepsin K, and may implicate this protease in accelerated CVD in people living with HIV.
Cathepsins are mechanosensitive proteases that are regulated not only by biochemical factors, but are also responsive to biomechanical forces in the cardiovascular system that regulate their expression and activity to participate in cardiovascular tissue remodeling. Their elastinolytic and collagenolytic activity have been implicated in atherosclerosis, abdominal aortic aneurysms, and in heart valve disease, all of which are lined by endothelial cells that are the mechanosensitive monolayer of cells that sense and respond to fluid shear stress as the blood flows across the surfaces of the arteries and valve leaflets. Inflammatory cytokine signaling is integrated with biomechanical signaling pathways by the endothelial cells to transcribe, translate, and activate either the cysteine cathepsins to remodel the tissue or to express their inhibitors to maintain healthy cardiovascular tissue structure. Other cardiovascular diseases should now be included in the study of the cysteine cathepsin activation because of the additional biochemical cues they provide that merges with the already existing hemodynamics driving cardiovascular disease. Sickle cell disease causes a chronic inflammation including elevated TNFα and increased numbers of circulating monocytes that alter the biochemical stimulation while the more viscous red blood cells due to the sickling of hemoglobin alters the hemodynamics and is associated with accelerated elastin remodeling causing pediatric strokes. HIV-mediated cardiovascular disease also occurs earlier in than the broader population and the influence of HIV-proteins and antiretrovirals on endothelial cells must be considered to understand these accelerated mechanisms in order to identify new therapeutic targets for prevention.
Rationale: Studies have demonstrated that exosomes can repair cardiac tissue post-myocardial infarction and recapitulate the benefits of cellular therapy. Objective: We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)-derived exosomes in a rat model of ischemia-reperfusion injury. Methods and Results: Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia-reperfusion injury. Echocardiography at day 3 post-myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post-myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. Conclusions: CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.