This study examined the role of male pubertal maturation on physical growth and development of neurocircuits that regulate stress, emotional and cognitive control using a translational nonhuman primate model. We collected longitudinal data from male macaques between pre- and peri-puberty, including measures of physical growth, pubertal maturation (testicular volume, blood testosterone -T- concentrations) and brain structural and resting-state functional MRI scans to examine developmental changes in amygdala (AMY), hippocampus (HIPPO), prefrontal cortex (PFC), as well as functional connectivity (FC) between those regions. Physical growth and pubertal measures increased from pre- to peri-puberty. The indexes of pubertal maturation -testicular size and T- were correlated at peri-puberty, but not at pre-puberty (23 months). Our findings also showed ICV, AMY, HIPPO and total PFC volumetric growth, but with region-specific changes in PFC. Surprisingly, FC in these neural circuits only showed developmental changes from pre- to peri-puberty for HIPPO-orbitofrontal FC. Finally, testicular size was a better predictor of brain structural maturation than T levels -suggesting gonadal hormones-independent mechanisms-, whereas T was a strong predictor of functional connectivity development. We expect that these neural circuits will show more drastic pubertal-dependent maturation, including stronger associations with pubertal measures later, during and after male puberty.
The current study examined the long-term effects of neonatal amygdala (Neo-A) lesions on brain corticotropin-releasing factor (CRF) systems and hypothalamic-pituitary-adrenal (HPA) axis function of male and female prepubertal rhesus monkeys. At 12-months-old, CSF levels of CRF were measured and HPA axis activity was characterized by examining diurnal cortisol rhythm and response to pharmacological challenges. Compared with controls, Neo-A animals showed higher cortisol secretion throughout the day, and Neo-A females also showed higher CRF levels. Hypersecretion of basal cortisol, in conjunction with blunted pituitary-adrenal responses to CRF challenge, suggest HPA axis hyperactivity caused by increased CRF hypothalamic drive leading to downregulation of pituitary CRF receptors in Neo-A animals. This interpretation is supported by the increased CRF CSF levels, suggesting that Neo-A damage resulted in central CRF systems overactivity. Neo-A animals also exhibited enhanced glucocorticoid negative feedback, as reflected by an exaggerated cortisol suppression following dexamethasone administration, indicating an additional effect on glucocorticoid receptor (GR) function. Together these data demonstrate that early amygdala damage alters the typical development of the primate HPA axis resulting in increased rather than decreased activity, presumably via alterations in central CRF and GR systems in neural structures that control its activity. Thus, in contrast to evidence that the amygdala stimulates both CRF and HPA axis systems in the adult, our data suggest an opposite, inhibitory role of the amygdala on the HPA axis during early development, which fits with emerging literature on "developmental switches" in amygdala function and connectivity with other brain areas.
by
Susan M. Mason;
S. Bryn Austin;
Jennifer L. Bakalar;
Renee Boynton-Jarrett;
Alison E. Field;
Holly C. Gooding;
Laura M. Holsen;
Benita Jackson;
Dianne Neumark-Sztainer;
Maria Sanchez;
Stephanie Sogg;
Marian Tanofsky-Kraff;
Janet W. Rich-Edwards
A cascade of neuroendocrine events regulates the initiation and progression of female puberty. However, the factors that determine the timing of these events across individuals are still uncertain. While the consequences of puberty on subsequent emotional development and adult behavior have received significant attention, what is less understood are the social and environmental factors that actually alter the initiation and progression of puberty. In order to more fully understand what factors influence pubertal timing in females, the present study quantified social and emotional behavior; stress physiology; and growth and activity measures in juvenile female rhesus monkeys to determine what best predicts eventual puberty. Based on previous reports, we hypothesized that increased agonistic behavior resulting from subordinate status in their natal group, in combination with slowed growth, reduced prosocial behavior, and increased emotional reactivity would predict delayed puberty. The analyses were restricted to behavioral and physiological measures obtained prior to the onset of puberty, defined as menarche. Together, our findings indicate that higher rates of aggression but lower rates of submission received from group mates; slower weight gain; and greater emotional reactivity, evidenced by higher anxiety, distress and appeasing behaviors, and lower cortisol responsivity in response to a potentially threatening situation, predicts delayed puberty. Together the combination of these variables accounted for 58% of the variance in the age of menarche, 71% in age at first ovulation, and 45% in the duration of adolescent sterility. While early puberty may be more advantageous for the individual from a fertility standpoint, it presents significant health risks, including increased risk for a number of estrogen dependent cancers and as well as the emergence of mood disorders during adulthood. On the other hand, it is possible that increased emotional reactivity associated with delayed puberty could persist, increasing the risk for emotional dysregulation to socially challenging situations. The data argue for prospective studies that will determine how emotional reactivity shown to be important for pubertal timing is affected by early social experience and temperament, and how these stress-related variables contribute to body weight accumulation, affecting the neuroendocrine regulation of puberty.
by
Jodi R. Godfrey;
Maylen Perez Diaz;
Melanie Pincus;
Zsofia Kovacs-Balint;
Eric Feczko;
Eric Earl;
Oscar Miranda-Dominguez;
Damien Fair;
Mar Sanchez;
Mark Wilson;
Vasiliki Michopoulos
Exposure to psychosocial stressors increases consumption of palatable, calorically dense diets (CDD) and the risk for obesity, especially in females. While consumption of an obesogenic diet and chronic stress have both been shown to decrease dopamine 2 receptor (D2R) binding and alter functional connectivity (FC) within the prefrontal cortex (PFC) and the nucleus accumbens (NAcc), it remains uncertain how social experience and dietary environment interact to affect reward pathways critical for the regulation of motivated behavior. Using positron emission tomography (PET) and resting state functional connectivity magnetic resonance neuroimaging (rs-fMRI), in female rhesus monkeys maintained in a low calorie chow (n = 18) or a dietary choice condition (chow and a CDD; n = 16) for 12 months, the current study tested the overarching hypothesis that the adverse social experience resulting from subordinate social status would interact with consumption of an obesogenic diet to increase caloric intake that would be predicted by greater cortisol, lower prefrontal D2R binding potential (D2R-BP) and lower PFC-NAcc FC. Results showed that the consequences of adverse social experience imposed by chronic social subordination vary significantly depending on the dietary environment and are associated with alterations in prefrontal D2R-BP and FC in NAcc-PFC sub-regions that predict differences in caloric intake, body weight gain, and fat accumulation. Higher levels of cortisol in the chow-only condition were associated with mild inappetence, as well as increased orbitofrontal (OFC) D2R-BP and greater FC between the NAcc and the dorsolateral PFC (dlPFC) and ventromedial PFC (vmPFC). However, increased cortisol release in females in the dietary choice condition was associated with reduced prefrontal D2R-BP, and opposite FC between the NAcc and the vmPFC and dlPFC observed in the chow-only females. Importantly, the degree of these glucocorticoid-related neuroadaptations predicted significantly more total calorie intake as well as more consumption of the CDD for females having a dietary choice, but had no relation to calorie intake in the chow-only condition. Overall, the current findings suggest that dietary environment modifies the consequences of adverse social experience on reward pathways and appetite regulation and, in an obesogenic dietary environment, may reflect impaired cognitive control of food intake.
Discovery and representation of common structural and functional cortical architectures has been a significant yet challenging problem for years. Due to the remarkable variability of structural and functional cortical architectures in human brain, it is challenging to jointly represent a common cortical architecture which can comprehensively encode both structure and function characteristics. In order to better understand this challenge and considering that macaque monkey brain has much less variability in structure and function compared with human brain, in this paper, we propose a novel computational framework to apply our DICCCOL (Dense Individualized and Common Connectivity-based Cortical Landmarks) and HAFNI (Holistic Atlases of Functional Networks and Interactions) frameworks on macaque brains, in order to jointly represent structural and functional connectome-scale profiles for identification of a set of consistent and common cortical landmarks across different macaque brains based on multimodal DTI and resting state fMRI (rsfMRI) data. Experimental results demonstrate that 100 consistent and common cortical landmarks are successfully identified via the proposed framework, each of which has reasonably accurate anatomical, structural fiber connection pattern, and functional correspondences across different macaque brains. This set of 100 landmarks offer novel insights into the structural and functional cortical architectures in macaque brains.
Developmental abnormalities of optic nerve are the leading cause of child blindness. The goal of this study was to use diffusion tensor imaging (DTI) to characterize the optic nerve development of non-human primates during the normal maturation from birth to adulthood. Forty healthy rhesus monkeys aged from 2 weeks to 6 years old were scanned with a clinical 3T scanner. It was demonstrated that the DTI parameters followed an exponential pattern during optic nerve maturation. The time constants of mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (λ∥) and radial diffusivity (λ⊥) were 16, 14, 18 and 15 months in rhesus monkeys, respectively. Significant decrease in RD was observed firstly at 12 months after birth (p<0.05). No significant differences were observed between the left and right optic nerves in any age group. The in vivo imaging results reveal the normal evolution patterns of DTI parameters during optic nerve maturation in primates. The data might be used as a reference in the examination of optic nerve developmental abnormalities or injury in children or preclinical studies.
Early social experiences, particularly maternal care, shape behavioral and physiological development in primates. Thus, it is not surprising that adverse caregiving, such as child maltreatment leads to a vast array of poor developmental outcomes, including increased risk for psychopathology across the lifespan. Studies of the underlying neurobiology of this risk have identified structural and functional alterations in cortico-limbic brain circuits that seem particularly sensitive to these early adverse experiences and are associated with anxiety and affective disorders. However, it is not understood how these neurobiological alterations unfold during development as it is very difficult to study these early phases in humans, where the effects of maltreatment experience cannot be disentangled from heritable traits.
The current study examined the specific effects of experience (“nurture”)versus heritable factors (“nature”)on the development of brain white matter (WM)tracts with putative roles in socioemotional behavior in primates from birth through the juvenile period. For this we used a randomized crossfostering experimental design in a naturalistic rhesus monkey model of infant maltreatment, where infant monkeys were randomly assigned at birth to either a mother with a history of maltreating her infants, or a competent mother. Using a longitudinal diffusion tensor imaging (DTI)atlas-based tract-profile approach we identified widespread, but also specific, maturational changes on major brain tracts, as well as alterations in a measure of WM integrity (fractional anisotropy, FA)in the middle longitudinal fasciculus (MdLF)and the inferior longitudinal fasciculus (ILF), of maltreated animals, suggesting decreased structural integrity in these tracts due to early adverse experience.
Exploratory voxelwise analyses confirmed the tract-based approach, finding additional effects of early adversity, biological mother, social dominance rank, and sex in other WM tracts. These results suggest tract-specific effects of postnatal maternal care experience versus heritable or biological factors on primate WM microstructural development. Further studies are needed to determine the specific behavioral outcomes and biological mechanisms associated with these alterations in WM integrity.
Attention bias towards threat using dot-probe tasks has mainly been reported in adults with stress-related disorders such as PTSD and other anxiety disorders, in some cases associated with early life stress or traumatic experiences. Studies during adolescence are scarce and inconsistent, which highlights the need to increase our understanding of the developmental processes that predict attentional biases, given that this is a time of emergence of psychopathology. Here, we use a translational nonhuman primate model of early life stress in the form of infant maltreatment to examine its long-term impact on attentional biases during adolescence using the dot-probe task and identify interactions with early life risk factors, such as prenatal exposure to stress hormones and emotional/stress reactivity during infancy.
Maltreated animals showed higher reaction times to social threat than animals that experienced competent maternal care, suggesting interference of negative valence stimuli on attentional control and cognitive processes. Higher emotional reactivity during infancy in Maltreated animals predicted attention bias towards threat, whereas higher levels of prenatal cortisol exposure was associated with bias away (avoidance of) threat in maltreated and control groups. Our findings suggest that different postnatal experiences and early biobehavioral mechanisms regulate the development of emotional attention biases during adolescence.
Persistent exposure to environmental stressors causes dysregulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis and alters GABAA receptor (GABAAR) levels throughout the brain. Social subordination in socially housed female rhesus results in distinctive stress-related physiological and behavioral phenotypes that are dependent on the ovarian hormone estradiol (E2). In the present study, we utilized ovariectomized adult female rhesus monkeys undergoing hormone replacement with E2 to test the hypothesis that the chronic psychosocial stress of subordination alters GABAAR binding potential (GABAAR BPND) in limbic regions implicated in emotional processing including the prefrontal cortex, temporal lobe (amygdala and hippocampus), and hypothalamus. Furthermore, we tested the hypothesis that peripheral administration of a corticotropin-releasing hormone (CRH) receptor antagonist (astressin B) would reverse the alterations in GABAAR binding within these regions in subordinate females. After subjects received astressin B or saline for three consecutive days, GABAAR BPND was determined by positron emission tomography (PET) using 18F-flumazenil as a radioligand. T1-weighted structural magnetic resonance imaging scans were also acquired for PET scan co-registration, in order to perform a region of interest analysis using the pons as a reference region. Compared to socially dominant females, subordinate females exhibited increased GABAAR BPND in the prefrontal cortex but not in the temporal lobe or the hypothalamus. Administration of astressin B eliminated the status difference in GABAAR BPND in the prefrontal cortex, suggesting that the chronic stressor of social subordination modulates GABAergic tone via effects on CRH and the LHPA axis, at least in prefrontal regions.