KRAS is the most frequently mutated oncogene in human cancer, particularly in cancers with a high mortality rate such as pancreatic, colorectal, and non-small cell lung cancer (NSCLC) (Ryan and Corcoran, 2018). While effective therapies directly targeting KRAS-mutant tumors have yet to be fully validated, recent clinical trials show positive progress for patients with the KRAS(G12C) mutation (Canon et al. 2019). Moreover, sequencing data has allowed for better understanding of how secondary mutations synergize with oncogenic KRAS to drive tumor progression. For example, activating mutations in KRAS frequently occur with loss-of-function mutations in the gene STK11, which encodes the tumor suppressor liver kinase B1 (LKB1), resulting in decreased patient survival, de novo resistance to targeted treatments and immunotherapies, and increased likelihood of tumor recurrence (Cancer Genome Atlas Research Network 2014, Skoulidis et al. 2018, Caiola et al. 2018). Additionally, previous work from genetically engineered mouse models (GEMMs) suggests loss of Lkb1 is sufficient to promote the progression and metastasis of nascent Kras-driven lung adenocarcinoma (Ji et al. 2007). Therefore, we sought to determine whether knockdown of Lkb1 by RNAi could cooperate with activating mutations in Ras to drive tissue overgrowth in wing imaginal discs of the genetically tractable model organism Drosophila melanogaster.
A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistance in vitro and in vivo. Taken together, our findings provide preclinical evidence for a pharmacologic combination of Bax activation and mTOR inhibition as a rational strategy to improve lung cancer treatment.
Background
The Drosophila archipelago gene (ago) encodes the specificity component of a ubiquitin-ligase that targets the Cyclin E and dMyc proteins for degradation. Its human ortholog Fbw7 is commonly lost in many cancers, suggesting that failure to degrade ago/Fbw7 targets leads to excess tissue growth.
Results
Here we show that although loss of ago induces hyperplasia of some organs, it paradoxically shrinks the size of the adult eye. We find that this reflects a requirement for ago to restrict apoptotic activity of the rbf1/e2f1 pathway adjacent to the eye-specific morphogenetic furrow: ago mutant cells display elevated de2f1 activity, express the pro-death dE2f1 targets hid and rpr, and undergo high rates of apoptosis. This death and the resulting small-eye phenotype are dependent on rbf1, de2f1, hid, and the rbf1/de2f1 regulators cyclin E and dacapo, but are independent of dp53. A transactivation-deficient de2f1 allele blocks MF-associated apoptosis of ago mutant cells but does not retard their clonal overgrowth, indicating that intact de2f1 function is required for the death but not overproliferation of ago cells. Alleles of EGFR and wg pathway components further modulate the ago apoptotic and eye size phenotypes, suggesting these pathways control rates of de2f1-driven apoptosis among ago mutant cells.
Conclusions
These data show that ago loss requires a collaborating block in cell death to efficiently drive tissue overgrowth and that this conditional growth-suppressor phenotype reflects a role for the gene in restricting apoptotic output of the rbf1/de2f1 pathway. Moreover, the susceptibility of ago mutant cells to succumb to this apoptotic program appears to depend on local variations in extracellular signaling that could thus determine tissue-specific fates of ago mutant cells.
Ras homolog gene family, member A (RhoA) is a small GTPase that plays critical roles in several essential cell functions, such as migration, adhesion, proliferation, and gene expression.1 RhoA switches between a GTP-bound active form and a GDP-bound inactive form. The activated RhoA directly interacts with its downstream effectors, such as Rho kinase (ROCK) to regulate actomyosin dynamics, or mDia1 to control stress fiber and filopodia formation. The activity of RhoA is primarily regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating protein (GAP), and guanine nucleotide-dissociation inhibitors (GDIs).
by
Junghui Koo;
Chang-Soo Seong;
Rebecca E Parker;
Bhakti Dwivedi;
Robert A Arthur;
Ashok Reddy Dinasarapu;
H. Richard Johnston;
Henry Claussen;
Carol Tucker-Burden;
Suresh S Ramalingam;
Haian Fu;
Wei Zhou;
Adam Marcus;
Melissa Gilbert-Ross
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.
Background: LKB1 is a serine/threonine kinase important for cell polarity and motility.
Results: LKB1 loss causes focal adhesion kinase hyperactivation and aberrant cell motility.
Conclusion: LKB1 represses focal adhesion kinase to regulate its turnover.
Significance: This provides information on how LKB1 regulates the cell adhesion pathway during cell motility.
Background: Purine nucleoside phosphorylase (PNP) gene transfer represents a promising approach to treatment of head and neck malignancies. We tested recombinant adenovirus already in phase I/II clinical testing and leading-edge patient-derived xenografts (PDX) as a means to optimize this therapeutic strategy. Methods: Our experiments investigated purine base cytotoxicity, PNP enzyme activity following treatment of malignant tissue, tumor mass regression, viral receptor studies, and transduction by tropism-modified adenovirus. Results: Replication deficient vector efficiently transduced PDX cells and mediated significant anticancer effect following treatment with fludarabine phosphate in vivo. Either 6-methylpurine or 2-fluoroadenine (toxic molecules generated by the PNP approach) ablated head and neck cancer cell proliferation. High levels of adenovirus-3 specific receptors were detected in human tumor models, and vector was evaluated that utilizes this pathway. Conclusions: Our studies provide the scientific foundation necessary to improve PNP prodrug cleavage and advance a new treatment for head and neck cancer.
by
Chang-Soo Seong;
Chunzi Huang;
Austin C Boese;
Yuning Hou;
Junghui Koo;
Janna K Mouw;
Manali Rupji;
Greg Joseph;
Richard H Johnston;
Henry Claussen;
Jeffrey M Switchenko;
Madhusmita Behera;
Michelle Churchman;
Jill M Kolesar;
Susanne M Arnold;
Katie Kerrigan;
Wallace Akerley;
Howard Colman;
Margaret A Johns;
Cletus Arciero;
Wei Zhou;
Adam Marcus;
Suresh Ramalingam;
Haian Fu;
Melissa Gilbert-Ross
Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP ( PTPN23 ) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.
Liver kinase B1 (LKB1)–inactivated tumors are vulnerable to the disruption of pyrimidine metabolism, and leflunomide emerges as a therapeutic candidate because its active metabolite, A77–1726, inhibits dihydroorotate dehydrogenase, which is essential for de novo pyrimidine biosynthesis. However, it is unclear whether leflunomide inhibits LKB1-inactivated tumors in vivo, and whether its inhibitory effect on the immune system will promote tumor growth. Here, we carried out a comprehensive analysis of leflunomide treatment in various LKB1-inactivated murine xenografts, patient-derived xenografts, and genetically engineered mouse models. We also generated a mouse tumor–derived cancer cell line, WRJ388, that could metastasize to the lung within a month after subcutaneous implantation in all animals. This model was used to assess the ability of leflunomide to control distant metastasis. Leflunomide treatment shrank a HeLa xenograft and attenuated the growth of an H460 xenograft, a patient-derived xenograft, and lung adenocarcinoma in the immune-competent genetically engineered mouse models. Interestingly, leflunomide suppressed tumor growth through at least three different mechanisms. It caused apoptosis in HeLa cells, induced G1 cell-cycle arrest in H460 cells, and promoted S-phase cell-cycle arrest in WRJ388 cells. Finally, leflunomide treatment prevented lung metastasis in 78% of the animals in our novel lung cancer metastasis model. In combination, these results demonstrated that leflunomide utilizes different pathways to suppress the growth of LKB1-inactivated tumors, and it also prevents cancer metastasis at distant sites. Therefore, leflunomide should be evaluated as a therapeutic agent for tumors with LKB1 inactivation.
The notion of a two-hit or multi-hit model of carcinogenesis dates to at least the 1970's and work done by Alfred Knudson. This concept was considered in the design and execution of a previous FLP/FRT screen in Drosophila melanogaster for conditional growth suppressors. During the course of this work, the lethal allele E7.25D.7 was identified as being of phenotypic interest. Here we report the genetic mapping of E7.25D.7, an allele of the sterile-20 kinase misshapen (msn).