Background. Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. Methods. Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. Results. Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19FG155S compared to RSV-challenged, unvaccinated mice. Conclusions. Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.
Respiratory syncytial virus (RSV) is a leading pediatric pathogen that is responsible for a majority of infant hospitalizations due to viral disease. Despite its clinical importance, no vaccine prophylaxis against RSV disease or effective antiviral therapeutic is available. In this study, we established a robust high-throughput drug screening protocol by using a recombinant RSV reporter virus to expand the pool of RSV inhibitor candidates. Mechanistic characterization revealed that a potent newly identified inhibitor class blocks viral entry through specific targeting of the RSV fusion (F) protein. Resistance against this class was induced and revealed overlapping hotspots with diverse, previously identified RSV entry blockers at different stages of preclinical and clinical development.
A structural and biochemical assessment of the mechanism of unique, broad RSV cross-resistance against structurally distinct entry inhibitors demonstrated that individual escape hotspots are located in immediate physical proximity in the metastable conformation of RSV F and that the resistance mutations lower the barrier for prefusion F triggering, resulting in an accelerated RSV entry kinetics. One resistant RSV recombinant remained fully pathogenic in a mouse model of RSV infection. By identifying molecular determinants governing the RSV entry machinery, this study spotlights a molecular mechanism of broad RSV resistance against entry inhibition that may affect the impact of diverse viral entry inhibitors presently considered for clinical use and outlines a proactive design for future RSV drug discovery campaigns.
by
Srirupa Chatterjee;
Priya Luthra;
Ekaterina Esaulova;
Eugene Agapov;
Benjamin C. Yen;
Dominika M. Borek;
Megan R. Edwards;
Anuradha Mittal;
David S. Jordan;
Parameshwar Ramanan;
Martin L Moore;
Rohit V. Pappu;
Michael J. Holtzman;
Max Artyomov;
Christopher F. Basler;
Gaya K. Amarasinghe;
Daisy W. Leung
Human respiratory syncytial virus (hRSV) is a major cause of morbidity and mortality in the paediatric, elderly and immune-compromised populations 1,2. A gap in our understanding of hRSV disease pathology is the interplay between virally encoded immune antagonists and host components that limit hRSV replication. hRSV encodes for non-structural (NS) proteins that are important immune antagonists 3-6; however, the role of these proteins in viral pathogenesis is incompletely understood. Here, we report the crystal structure of hRSV NS1 protein, which suggests that NS1 is a structural paralogue of hRSV matrix (M) protein. Comparative analysis of the shared structural fold with M revealed regions unique to NS1. Studies on NS1 wild type or mutant alone or in recombinant RSVs demonstrate that structural regions unique to NS1 contribute to modulation of host responses, including inhibition of type I interferon responses, suppression of dendritic cell maturation and promotion of inflammatory responses. Transcriptional profiles of A549 cells infected with recombinant RSVs show significant differences in multiple host pathways, suggesting that NS1 may have a greater role in regulating host responses than previously appreciated. These results provide a framework to target NS1 for therapeutic development to limit hRSV-associated morbidity and mortality.
by
A. Leemans;
M. De Schryver;
W. Van der Gucht;
A. Heykers;
I. Pintelon;
A.L. Hotard;
Martin L Moore;
J.A. Melero;
J.S. McLellan;
B.S. Graham;
L. Broadbent;
U.F. Power;
G. Caljon;
P. Cos;
L. Maes;
P. Delputte
Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication.
Human rhinovirus (HRV) remains a leading cause of several human diseases including the common cold. Despite considerable research over the last 60 years, development of an effective vaccine to HRV has been viewed by many as unfeasible due, in part, to the antigenic diversity of circulating HRVs in nature. Over 150 antigenically distinct types of HRV are currently known which span three species: HRV A, HRV B, and HRV C. Early attempts to develop a rhinovirus vaccine have shown that inactivated HRV is capable of serving as a strong immunogen and inducing neutralizing antibodies. Yet, limitations to virus preparation and recovery, continued identification of antigenic variants of HRV, and logistical challenges pertaining to preparing a polyvalent preparation of the magnitude required for true efficacy against circulating rhinoviruses continue to prove a daunting challenge. In this review, we describe HRV biology, antigenic diversity, and past and present advances in HRV vaccine design.
by
Daiyin Tian;
Michael B. Battles;
Syed M. Moin;
Man Chen;
Kayvon Modjarrad;
Azad Kumar;
Masaru Kanekiyo;
Kevin W. Graepel;
Noor M. Taher;
Anne L. Hotard;
Martin Moore;
Min Zhao;
Zi-Zheng Zheng;
Ning-Shao Xia;
Jason S. McLellan;
Barney S. Graham
A licensed vaccine for respiratory syncytial virus (RSV) is unavailable, and passive prophylaxis with the antibody palivizumab is restricted to high-risk infants. Recently isolated antibodies 5C4 and D25 are substantially more potent than palivizumab, and a derivative of D25 is in clinical trials. Here we show that unlike D25, 5C4 preferentially neutralizes subtype A viruses. The crystal structure of 5C4 bound to the RSV fusion (F) protein reveals that the overall binding mode of 5C4 is similar to that of D25, but their angles of approach are substantially different. Mutagenesis and virological studies demonstrate that RSV F residue 201 is largely responsible for the subtype specificity of 5C4. These results improve our understanding of subtype-specific immunity and the neutralization breadth requirements of next-generation antibodies, and thereby contribute to the design of broadly protective RSV vaccines.
Pre-fusion stabilizing mutations (DS-Cav1) in soluble fusion (F) proteins of human respiratory syncytial virus (RSV) were previously reported. Here we investigated the antigenic and immunogenic properties of pre-fusion like RSV F proteins on enveloped virus-like particles (VLP). Additional mutations were introduced to DS-Cav1 (F-dcmTM VLP); fusion peptide deletion and cleavage mutation site 1 (F1d-dcmTM VLP) or both sites (F12d-dcmTM VLP). F1d-dcmTM VLP and F12d-dcmTM VLP displayed higher reactivity against pre-fusion specific site Ø and antigenic site I and II specific monoclonal antibodies, compared to F-dcmTM VLP with DS-Cav1 only. Mice immunized with F1d-dcmTM VLP and F12d-dcmTM VLP induced higher levels of DS-Cav1 pre-fusion specific IgG antibodies, RSV neutralizing activity titers, and effective lung viral clearance after challenge. These results suggest that cleavage site mutations and fusion peptide deletion in addition to DS-Cav1 mutations have contributed to structural stabilization of pre-fusion like F conformation on enveloped VLP, capable of inducing high levels of pre-fusion F specific and RSV neutralizing antibodies.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. With repeat infections throughout life, it can also cause substantial disease in the elderly and in adults with compromised cardiac, pulmonary and immune systems. RSV is a pleomorphic enveloped RNA virus in the Pneumoviridae family. Recently, the three-dimensional (3D) structure of purified RSV particles has been elucidated, revealing three distinct morphological categories: spherical, asymmetric, and filamentous. However, the native 3D structure of RSV particles associated with or released from infected cells has yet to be investigated. In this study, we have established an optimized system for studying RSV structure by imaging RSV-infected cells on transmission electron microscopy (TEM) grids by cryo-electron tomography (cryo-ET). Our results demonstrate that RSV is filamentous across several virus strains and cell lines by cryo-ET, cryo-immuno EM, and thin section TEM techniques. The viral filament length varies from 0.5 to 12 μm and the average filament diameter is approximately 130 nm. Taking advantage of the whole cell tomography technique, we have resolved various stages of RSV assembly. Collectively, our results can facilitate the understanding of viral morphogenesis in RSV and other pleomorphic enveloped viruses.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1- QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation.
Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus.