An extension of neo-Darwinism, termed preassembly, states that genetic material required for many complex traits, such as echolocation, was present long before emergence of the traits. Assembly of genes and gene segments had occurred over protracted time-periods within large libraries of non-coding genes. Epigenetic factors ultimately promoted transfers from noncoding to coding genes, leading to abrupt formation of the trait via de novo genes. This preassembly model explains many observations that to this present day still puzzle biologists: formation of super-complexity in the absence of multiple fossil precursors, as with bat echolocation and flowering plants; major genetic and physical alterations occurring in just a few thousand years, as with housecat evolution; lack of precursors preceding lush periods of species expansion, as in the Cambrian explosion; and evolution of costly traits that exceed their need during evolutionary times, as with human intelligence. What follows in this paper is a mechanism that is not meant to supplant neo-Darwinism; instead, preassembly aims to supplement current ideas when complexity issues leave them struggling.
Six organic additives, each bearing a different number of anionic charges, were added to a large excess of cationic surfactant (dodecyltrimethylammonium bromide, DTAB). The surface-tension vs. log [DTAB] plot for solutions containing DTAB/trianion = 15:1 showed an abrupt break (routinely taken as the critical micelle concentration, CMC) at 2.9 mM. This constitutes a 5-fold decrease compared with a CMC of 15 mM for pure aqueous DTAB. There is a 10-fold decrease in the break-point concentration caused by a mere 3 mol-% of hexanion. Corresponding CMC values from DTAB/trianion mixtures, measured by both conductivity and diffusion-NMR, gave normal values of 14 mM. The unusual discrepancy between the CMC based on surface tension and on the two “bulk” methods was attributed to saturation of the air/water interface by a DTAB/trianion complex far below the concentration at which the micelles form. Thus, the sharp break seen in surface-tension “CMC plots” need not in fact attest to actual micelle formation as is almost universally assumed in colloid chemistry.
Molecular areas of soluble films at the air/water interface have traditionally been calculated by applying the Gibbs equation to the steep linear decline in surface tension as the bulk concentration increases. This approach presupposes that the interface is saturated in the “Gibbs region,” thereby allowing a single unique area to be calculated. We show that the areas derived by the Gibbs equation (typically 50 – 60 Å2/molecule) are much too large to account for the abrupt surface tension decline. Moreover, a surface tension/concentration plot was observed for a system where micelle formation does not interfere with the Gibbs region. Nonetheless, the surface tension plot leveled off, ostensibly owing to saturation, when the Gibbs approach predicted a continued linear decline, proving that the interface in the Gibbs region is not saturated as generally assumed. This conclusion means that the hundreds of published molecular areas obtained by the Gibbs approach should be reconsidered.