Cells exist in the body in mechanically dynamic environments, yet the vast majority of in vitro cell culture is conducted on static materials such as plastic dishes and gels. To address this limitation, we report an approach to transition widely used hydrogels into mechanically active substrates by doping optomechanical actuator (OMA) nanoparticles within the polymer matrix. OMAs are composed of gold nanorods surrounded by a thermoresponsive polymer shell that rapidly collapses upon near-infrared (NIR) illumination. As a proof of concept, we crosslinked OMAs into laminin-gelatin hydrogels, generating up to 5 μm deformations triggered by NIR pulsing. This response was tunable by NIR intensity and OMA density within the gel and is generalizable to other hydrogel materials. Hydrogel mechanical stimulation enhanced myogenesis in C2C12 myoblasts as evidenced by ERK signaling, myocyte fusion, and sarcomeric myosin expression. We also demonstrate rescued differentiation in a chronic inflammation model as a result of mechanical stimulation. This work establishes OMA-actuated biomaterials as a powerful tool for in vitro mechanical manipulation with broad applications in the field of mechanobiology.
Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Cocaine addicted men have low startle magnitude persisting during prolonged abstinence. Low startle rats show greater cocaine self-administration than high startle rats. Low startle may be a marker of a vulnerability to heightened cocaine-related behaviors in rats and similarly may be a marker of vulnerability to cocaine addiction in humans.
Calcitonin gene-related peptide (CGRP) infusions into the bed nucleus of the stria terminalis (BNST) evoke increases in startle amplitude and increases in anxiety-like behavior in the plus maze. Conversely, intra-BNST infusions of the CGRP antagonist CGRP8–37 block unconditioned startle increases produced by fox odor. Here we evaluate the contribution of CGRP signaling in the BNST to the development and expression of learned fear. Rats received five pairings of a 3.7-sec light and footshock and were tested for fear-potentiated startle one or more days later. Neither pre-training (Experiment 1) nor pre-test (Experiment 2) infusions of the CGRP antagonist CGRP8–37 (800 ng/BNST) disrupted fear-potentiated startle to the 3.7-sec visual cue. However, in both experiments, CGRP8–37 infusions disrupted baseline startle increases that occurred when rats were tested in the same context as that in which they previously received footshock (Experiment 3). Intra-BNST CGRP8–37 infusions did not disrupt shock-evoked corticosterone release (Experiment 4). These data confirm previous findings implicating BNST CGRP receptors in fear and anxiety. They extend those results by showing an important contribution to learned fear and, specifically, to fear evoked by a shock-associated context rather than a discrete cue. This pattern is consistent with previous models of BNST function that have posited a preferential role in sustained anxiety as opposed to phasic fear responses. More generally, the results add to a growing body of evidence indicating behaviorally, possibly clinically, relevant modulation of BNST function by neuroactive peptides.
by
Caroline C. Kim;
Elizabeth G. Berry;
Michael A. Marchetti;
Susan M. Swetter;
Geoffrey Lim;
Douglas Grossman;
Clara Curiel-Lewandrowski;
Emily Y. Chu;
Michael E. Ming;
Kathleen Zhu;
Meera Brahmbhatt;
Vijay Balakrishnan;
Michael Davis;
Zachary Wolner;
Nathaniel Fleming;
Laura K. Ferris;
John Nguyen;
Oleksandr Trofymenko;
Yuan Liu;
Suephy Chen
Importance: Little evidence exists to guide the management of moderately dysplastic nevi excisionally biopsied without residual clinical pigmentation but with positive histologic margins (hereafter referred to as moderately dysplastic nevi with positive histologic margins). Objective: To determine outcomes and risk for the development of subsequent cutaneous melanoma (CM) from moderately dysplastic nevi with positive histologic margins observed for 3 years or more. Design, Setting, and Participants: A multicenter (9 US academic dermatology sites) retrospective cohort study was conducted of patients 18 years or older with moderately dysplastic nevi with positive histologic margins and 3 years or more of follow-up data collected consecutively from January 1, 1990, to August 31, 2014. Records were reviewed for patient demographics, biopsy type, pathologic findings, and development of subsequent CM at the biopsy site or elsewhere on the body. The χ2 test, the Fisher exact test, and analysis of variance were used to assess univariate association for risk of subsequent CMs, in addition to multivariable logistic regression models. To confirm histologic grading, each site submitted 5 random representative slide cases for central dermatopathologic review. Statistical analysis was performed from October 1, 2017, to June 22, 2018. Main Outcomes and Measures: Development of CM at a biopsy site or elsewhere on the body where there were moderately dysplastic nevi with positive histologic margins. Results: A total of 467 moderately dysplastic nevi with positive histologic margins from 438 patients (193 women and 245 men; mean [SD] age, 46.7 [16.1] years) were evaluated. No cases developed into CM at biopsy sites, with a mean (SD) follow-up time of 6.9 (3.4) years. However, 100 patients (22.8%) developed a CM at a separate site. Results of multivariate analyses revealed that history of CM was significantly associated with the risk of development of subsequent CM at a separate site (odds ratio, 11.74; 95% CI, 5.71-24.15; P <.001), as were prior biopsied dysplastic nevi (odds ratio, 2.55; 95% CI, 1.23-5.28; P =.01). The results of a central dermatopathologic review revealed agreement in 35 of 40 cases (87.5%). Three of 40 cases (7.5%) were upgraded in degree of atypia; of these, 1 was interpreted as melanoma in situ. That patient remains without recurrence or evidence of CM after 5 years of follow-up. Conclusions and Relevance: This study suggests that close observation with routine skin surveillance is a reasonable management approach for moderately dysplastic nevi with positive histologic margins. However, having 2 or more biopsied dysplastic nevi (with 1 that is a moderately dysplastic nevus) appears to be associated with increased risk for subsequent CM at a separate site.
Baseline cue-dependent physiological reactivity may serve as an objective measure of posttraumatic stress disorder (PTSD) symptoms. Additionally, prior animal model and psychological studies would suggest that subjects with greatest symptoms at baseline may have the greatest violation of expectancy to danger when undergoing exposure based psychotherapy; thus treatment approaches which enhanced the learning under these conditions would be optimal for those with maximal baseline cue-dependent reactivity. However methods to study this hypothesis objectively are lacking. Virtual reality (VR) methodologies have been successfully employed as an enhanced form of imaginal prolonged exposure therapy for the treatment of PTSD.
Our goal was to examine the predictive nature of initial psychophysiological (e.g., startle, skin conductance, heart rate) and stress hormone responses (e.g., cortisol) during presentation of VR-based combat-related stimuli on PTSD treatment outcome. Combat veterans with PTSD underwent 6 weeks of VR exposure therapy combined with either D-cycloserine (DCS), alprazolam (ALP), or placebo (PBO). In the DCS group, startle response to VR scenes prior to initiation of treatment accounted for 76% of the variance in CAPS change scores, p < 0.001, in that higher responses predicted greater changes in symptom severity over time. Additionally, baseline cortisol reactivity was inversely associated with treatment response in the ALP group, p = 0.04. We propose that baseline cue-activated physiological measures will be sensitive to predicting patients' level of response to exposure therapy, in particular in the presence of enhancement (e.g., DCS).
Background: Posttraumatic stress disorder (PTSD) patients show heightened fear responses to trauma reminders and an inability to inhibit fear in the presence of safety reminders. Brain imaging studies suggest that this is in part due to amygdala over-reactivity as well as deficient top-down cortical inhibition of the amygdala. Consistent with these findings, previous studies, using fear-potentiated startle (FPS), have shown exaggerated startle and deficits in fear inhibition in PTSD participants. However, many PTSD studies using the skin conductance response (SCR) report no group differences in fear acquisition.
Method: The study included 41 participants with PTSD and 70 without PTSD. The fear conditioning session included a reinforced conditioned stimulus (CS+, danger cue) paired with an aversive airblast, and a nonreinforced conditioned stimulus (CS-, safety cue). Acoustic startle responses and SCR were acquired during the presentation of each CS.
Results: The results showed that fear conditioned responses were captured in both the FPS and SCR measures. Furthermore, PTSD participants had higher FPS to the danger cue and safety cue compared to trauma controls. However, SCR did not differ between groups. Finally, we found that FPS to the danger cue predicted re-experiencing symptoms, whereas FPS to the safety cue predicted hyper-arousal symptoms. However, SCR did not contribute to PTSD symptom variance.
Conclusions: Replicating earlier studies, we showed increased FPS in PTSD participants. However, although SCR was a good measure of differential conditioning, it did not differentiate between PTSD groups. These data suggest that FPS may be a useful tool for translational research.
Catecholamines play an important regulatory role in cutaneous wound healing. The exact role of dopamine in human epidermis has yet to be fully elucidated. Current published evidence describes its differential effects on two separate families of G protein coupled receptors: D1-like and D2-like dopamine receptors. Dopamine may enhance angiogenesis and wound healing through its action on dopamine D1 receptors, while impairing wound healing when activating D2 receptors. This review summarizes the evidence for the role of dopamine in wound healing and describes potential mechanisms behind its action on D1 versus D2-like receptors in the skin.
Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors’ properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the NR1/NR2B receptor antagonist CP101,606 (0.5, 1.5, or 4.5 μg/amygdala) or the NR1/NR2A-preferring antagonist NVP-AAM077 (0.075, 0.25, 0.75, or 2.5 μg/amygdala) into the amygdala prior to either fear conditioning (i.e., light-shock pairings) or fear-potentiated startle testing. CP101,606 nonmonotonically disrupted fear conditioning but did not disrupt fear expression. NVP-AAM077 dose-dependently disrupted fear conditioning as well as fear expression. The results suggest that amygdala NR1/NR2B receptors play a special role in fear memory formation, whereas NR1/NR2A receptors participate more generally in synaptic transmission.
We examined brain-derived neurotrophic factor (BDNF) mRNA expression across the olfactory system following fear conditioning. Mice received 10 pairings of odor with footshock or equivalent unpaired odors and shocks. We found increased BDNF mRNA in animals receiving paired footshocks in the multiple regions examined including the posterior piriform cortex (PPC) and basolateral amygdala (BLA). This was in contrast to the unpaired and odor-alone treatments, where BDNF mRNA was increased in the olfactory bulb (OB) and anterior piriform cortex (APC) only, but not the higher olfactory areas. We propose that odor exposure increases expression of BDNF in the OB and APC while the PPC and BLA increase BDNF mRNA only when associative learning occurs.