Background
The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines. Despite its excellent safety record, some cases of viscerotropic adverse events develop, which are sometimes fatal. The mechanisms underlying such events remain a mystery. Here, we present an analysis of the immunologic and genetic factors driving disease in a 64-year-old male who developed viscerotropic symptoms.
Methods
We obtained clinical, serologic, virologic, immunologic and genetic data on this case patient.
Results
Viral RNA was detected in the blood 33 days after vaccination, in contrast to the expected clearance of virus by day 7 after vaccination in healthy vaccinees. Vaccination induced robust antigen-specific T and B cell responses, which suggested that persistent virus was not due to adaptive immunity of suboptimal magnitude. The genes encoding OAS1, OAS2, TLR3, and DC-SIGN, which mediate antiviral innate immunity, were wild type. However, there were heterozygous genetic polymorphisms in chemokine receptor CCR5, and its ligand RANTES, which influence the migration of effector T cells and CD14+CD16bright monocytes to tissues. Consistent with this, there was a 200-fold increase in the number of CD14+CD16bright monocytes in the blood during viremia and even several months after virus clearance.
Conclusion;
In this patient, viscerotropic disease was not due to the impaired magnitude of adaptive immunity but instead to anomalies in the innate immune system and a possible disruption of the CCR5-RANTES axis.
We evaluated whether coadministration of the yellow fever (YF) virus vaccine with human immunoglobulin (Ig) that contained YF virus-neutralizing antibodies would reduce post-vaccination viremia without compromising immunogenicity and thus, potentially mitigate YF vaccine-associated adverse events. We randomized 80 participants to receive either YF vaccine and Ig or YF vaccine and saline placebo. Participants were followed for 91 days for safety and assessments of viremia and immunogenicity. There were no differences found between the two groups in the proportion of vaccinated participants who developed viremia, seroconversion, cluster of differentiation (CD)-8+ and CD4+ T-cell responses, and cytokine responses. These results argue against one putative explanation for the increased reporting of YF vaccine side effects in recent years (i.e., a change in travel clinic practice after 1996 when hepatitis A prophylaxis with vaccine replaced routine use of pre-travel Ig, thus potentially removing an incidental YF vaccine-attenuating effect of anti-YF virus antibodies present in Ig) (ClinicalTrials.gov identifier: NCT00254826).