Many enzymes are known to change conformations during their catalytic cycle, but the role of these protein motions is not well understood. Escherichia coli dihydrofolate reductase (DHFR) is a small, flexible enzyme that is often used as a model system for understanding enzyme dynamics. Recently, native tryptophan fluorescence was used as a probe to study micro- to millisecond dynamics of DHFR. Yet, because DHFR has five native tryptophans, the origin of the observed conformational changes could not be assigned to a specific region within the enzyme. Here, we use DHFR mutants, each with a single tryptophan as a probe for temperature jump fluorescence spectroscopy, to further inform our understanding of DHFR dynamics. The equilibrium tryptophan fluorescence of the mutants shows that each tryptophan is in a different environment and that wild-type DHFR fluorescence is not a simple summation of all the individual tryptophan fluorescence signatures due to tryptophan–tryptophan interactions. Additionally, each mutant exhibits a two-phase relaxation profile corresponding to ligand association/dissociation convolved with associated conformational changes and a slow conformational change that is independent of ligand association and dissociation, similar to the wild-type enzyme. However, the relaxation rate of the slow phase depends on the location of the tryptophan within the enzyme, supporting the conclusion that the individual tryptophan fluorescence dynamics do not originate from a single collective motion, but instead report on local motions throughout the enzyme.
Previous studies of a thermophilic alcohol dehydrogenase (ht-ADH) demonstrated a range of discontinuous transitions at 30 °C that include catalysis, kinetic isotope effects, protein hydrogen-deuterium exchange rates, and intrinsic fluorescence properties. Using the Förster resonance energy transfer response from a Trp-NADH donor-acceptor pair in T-jump studies of ht-ADH, we now report microsecond protein motions that can be directly related to active site chemistry. Two distinctive transients are observed: a slow, kinetic process lacking a temperature break, together with a faster transient that is only detectable above 30 °C. The latter establishes a link between enzyme activity and microsecond protein motions near the cofactor binding site, in a region distinct from a previously detected protein network that communicates with the substrate binding site. Though evidence of direct dynamical links between microsecond protein motions and active site bond cleavage events is extremely rare, these studies highlight the potential of T-jump measurements to uncover such properties.