Objectives High-dose vitamin D3increases plasma total 25-hydroxyvitamin D [25(OH)D] in critically ill, ventilated patients; however, to our knowledge, the effect on plasma levels of free (nonprotein-bound) 25(OH)D has not been investigated in critical illness. Moreover, the relationship of free 25(OH)D and the regulation of endogenous antimicrobial peptides (AMPs) remains unknown. The aims of this study were to determine in critically ill adults with respiratory failure the effect of previous high-dose regimens of vitamin D3on free 25(OH)D concentrations, the relationship of free 25(OH)D with circulating cathelicidin (LL-37) and human beta-defensin-2 (hBD-2), and the associations between plasma levels of free 25(OH)D and these AMPs to alveolar macrophage phagocytosis function. Methods In a double blind, randomized controlled trial, critically ill ventilator-dependent adults (N = 30) received enteral vitamin D3(250,000 or 500,000 IU total over 5 d) or placebo. Plasma was obtained serially for concentrations of free 25(OH)D, LL-37, hBD-2, and expression of peripheral blood mononuclear cell human cationic antimicrobial protein (hCAP18) mRNA. Total 25(OH)D and LL-37 concentrations and alveolar macrophage phagocytosis were determined in bronchoalveolar lavage fluid. Results Plasma concentrations of free 25(OH)D over time were correlated with total 25(OH)D levels (r= 0.82; P < 0.001). The increase in free 25(OH)D was greater with the 500 000 IU vitamin D3dose than with the lower dose. The percent change in mRNA expression of hCAP18 was positively associated with percent change in free 25(OH)D at days 7 and 14 (ρ = 0.48; P = 0.04 and ρ = 0.59; P = 0.03, respectively). Additionally, plasma LL-37 levels correlated with the percentage of alveolar macrophages exhibiting phagocytosis (ρ = 0.51; P = 0.04). Conclusions The present study found a dose-related increase in plasma free-25(OH)D levels, which was associated with increasing circulating mRNA expression of hCAP18 over time. There were no correlations between changes in total and free 25(OH)D against plasma LL-37 and hBD-2 concentrations. Larger studies appear warranted to determine the impact of high-dose vitamin D3administration on endogenous AMPs.
Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdx's), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol-disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs, such as phagocytosis, which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder.
Annually, excessive alcohol use accounts for more than $220 billion in economic costs and 80,000 deaths, making excessive alcohol use the third leading lifestyle-related cause of death in the US. Patients with an alcohol-use disorder (AUD) also have an increased susceptibility to respiratory pathogens and lung injury, including a 2–4-fold increased risk of acute respiratory distress syndrome (ARDS). This review investigates some of the potential mechanisms by which alcohol causes lung injury and impairs lung immunity. In intoxicated individuals with burn injuries, activation of the gut-liver axis drives pulmonary inflammation, thereby negatively impacting morbidity and mortality. In the lung, the upper airway is the first checkpoint to fail in microbe clearance during alcohol-induced lung immune dysfunction. Brief and prolonged alcohol exposure drive different post-translational modi fications of novel proteins that control cilia function. Proteomic approaches are needed to identify novel alcohol targets and post-translational modifications in airway cilia that are involved in alcohol-dependent signal transduction pathways. When the upper airway fails to clear inhaled pathogens, they enter the alveolar space where they are primarily cleared by alveolar macrophages (AM). With chronic alcohol ingestion, oxidative stress pathways in the AMs are stimulated, thereby impairing AM immune capacity and pathogen clearance. The epidemiology of pneumococcal pneumonia and AUDs is well established, as both increased predisposition and illness severity have been reported. AUD subjects have increased susceptibility to pneumococcal pneumonia infections, which may be due to the pro-inflammatory response of AMs, leading to increased oxidative stress.
An alcohol use disorder (AUD) is associated with an increased susceptibility to respiratory infection and injury and, upon hospitalization, higher mortality rates. Studies in model systems show effects of alcohol on mitochondrial function, lipid metabolism and antioxidant systems. The present study applied high-resolution metabolomics to test for these changes in bronchoalveolar lavage fluid (BALF) of subjects with an AUD. Smokers were excluded to avoid confounding effects and compliance was verified by cotinine measurements. Statistically significant metabolic features, differentially expressed by control and AUD subjects, were identified by statistical and bioinformatic methods. The results show that fatty acid and acylcarnitine concentrations were increased in AUD subjects, consistent with perturbed mitochondrial and lipid metabolism. Decreased concentrations of methyl-donor compounds suggest altered one-carbon metabolism and oxidative stress. An accumulation of peptides suggests proteolytic activity, which could reflect altered epithelial barrier function. Two metabolites of possible microbial origin suggest subclinical bacterial infection. Furthermore, increased diacetylspermine suggests additional metabolic perturbations, which could contribute to dysregulated alveolar macrophage function and vulnerability to infection. Together, the results show an extended metabolic consequence of AUD in the bronchoalveolar space.
The accumulation of fatty acid ethyl esters (FAEEs) in meconium of term newborns has been described as one potential biomarker of maternal alcohol use during pregnancy. FAEEs accumulate in multiple alcohol-exposed fetal tissues and in the placenta. Limited research has focused on the identification of the premature newborn exposed to alcohol in utero.We hypothesized that maternal alcohol use occurs in a significant proportion of premature deliveries and that this exposure can be detected as elevated placental FAEEs. The goals of this study were to 1) determine the prevalence ofmaternal alcohol use in the premature newborn and 2) investigate whether placental FAEEs could identify those newborns with fetal alcohol exposure. This prospective observational study evaluated 80 placentas from 80 women after premature delivery. Subjects were interviewed for alcohol intake and placental FAEEs were quantified via GC/MS. Receiver Operator Characteristic (ROC) Curves were generated to evaluate the ability of placental FAEEs to predict maternal drinking during pregnancy. Adjusted ROC curves were generated to adjust for gestational age, maternal smoking, and illicit drug use. 30% of the subjects admitted to drinking alcohol during pregnancy and approximately 14% answered questions indicative of problem drinking (designated AUDIT+). The specific FAEEs ethyl stearate and linoleate, as well as combinations of oleate + linoleate + linolenate (OLL) and of OLL + stearate, were significantly (p<0.05) elevated in placentas from AUDIT+ pregnancies. Adjusted ROC Curves generated areas under the curve ranging from88-93% with negative predictive values of 97%for AUDIT+ pregnancies. We conclude that nearly one third of premature pregnancies were alcohol-exposed, and that elevated placental FAEEs hold great promise to accurately determine maternal alcohol use, particularly heavy use, in pregnancies complicated by premature delivery.
Rationale
Previous studies have shown that chronic ethanol ingestion results in impaired alveolar macrophage function, increased TGF-β1 production, and decreased antioxidant availability. Similarly, alternative activation (M2 activation) of alveolar macrophages also induces TGF-β1 production and impairs macrophage function. However, the potential links between ethanol-induced alveolar macrophage derangements, M2 activation, TGF-β1 production signaling, and oxidant stress has yet to be examined.
Objective
We hypothesized that ethanol-induced oxidant stress and induction of TGF-β1 signaling results in alternative activation which subsequently impairs the phagocytic capacity of alveolar macrophages.
Methods
Primary rat alveolar macrophages and the alveolar macrophages cell line NR8383 was treated with 0.08% ethanol ± the antioxidant glutathione (GSH) or a TGF-β1 neutralizing antibody for 5 days. Outcome measures included TGF-β1 production, reactive oxygen species (ROS) production, phagocytic capacity, and expression of markers of M2 activation.
Results
Chronic ethanol treatment greatly decreased alveolar macrophage phagocytic function, increased ROS production, increased TGF-β1, and increased expression of markers of M2 activation. Glutathione supplementation and inhibition of TGF-β1 signaling during ethanol treatment prevented these alterations.
Conclusions
Ethanol treatment increased oxidant stress, TGF-β1 production, and alternative activation in NR8383 cells. However, GSH supplementation and ablation of TGF-β1 signaling prevented these effects. This suggested the ethanol-induced switch to a M2 phenotype was a result of decreased antioxidant availability and increased TGF-β1 signaling. Preventing ethanol-induced induction of alternative activation may improve alveolar macrophage function in alcoholic subjects and decrease the risk of respiratory infections.
Background
While several studies suggest that traffic-related air pollutants are detrimental for respiratory health, few studies have examined relationships between residential proximity to a major roadway and asthma control in children. Furthermore, a major limitation of existing research is reliance on self-reported outcomes. We therefore determined the spatial relationship between the distance from a major roadway and clinical, physiologic and inflammatory features of asthma in a highly characterized sample of asthmatic children 6–17 years of age across a wide range of severities. We hypothesized that a closer residential proximity to a major roadway would be associated with increased respiratory symptoms, altered pulmonary function and a greater magnitude of airway and systemic inflammation.
Methodology/Principal Findings
224 children 6–17 years with confirmed asthma completed questionnaires and underwent spirometry, plethysmography, exhaled nitric oxide determination, exhaled breath condensate collection and venipuncture. Residential distance from a major roadway was determined by mapping the geographic coordinates of the residential address in Geographic Information System software. The distance between the home address and the nearest major roadway was calculated according to the shortest distance between the two points (i.e., “as the crow flies”). Asthmatic children living in closer proximity to a major roadway had an increased frequency of wheezing associated with increased medication requirements and more hospitalizations even after controlling for potential confounders. These children also had increased airway resistance, increased airway inflammation reflected by a lower breath condensate pH, and higher plasma EGF concentrations.
Conclusions/Significance
These findings suggest that closer residential proximity to a major roadway is associated with poorer asthma control in school-age children. Assessment of residential proximity to major roadways may be useful in the clinical evaluation of asthma in children.
Exhaled breath condensate (EBC) has been increasingly studied as a noninvasive research method for sampling the alveolar and airway space and is recognized as a promising source of biomarkers of lung diseases. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although EBC has great potential as a source of biomarkers in many lung diseases, the low concentrations of compounds within the EBC present challenges in sample collection and analysis. Although EBC is viewed as a noninvasive method for sampling airway lining fluid (ALF), validation is necessary to confirm that EBC truly represents the ALF. Likewise, a dilution factor for the EBC is needed in order to compare across subjects and determine changes in the ALF. The aims of this paper are to address the characteristics of EBC; strategies to standardize EBC sample collection and review available analytical techniques for EBC analysis.
Chronic alcohol ingestion increases the risk of developing acute respiratory distress syndrome (ARDS), a severe form of acute lung injury, characterized by alveolar epithelial and endothelial barrier disruption and intense inflammation. Alcohol abuse is also associated with a higher incidence of sepsis or pneumonia resulting in a higher rate of admittance to intensive care, longer inpatient stays, higher healthcare costs, and a 2–4 times greater mortality rate. Chronic alcohol ingestion induced severe oxidative stress associated with increased ROS generation, depletion of the critical antioxidant glutathione (GSH), and oxidation of the thiol/disulfide redox potential in the alveolar epithelial lining fluid and exhaled breath condensate. Across intracellular and extracellular GSH pools in alveolar type II cells and alveolar macrophages, chronic alcohol ingestion consistently induced a 40–60 mV oxidation of GSH/GSSG suggesting that the redox potentials of different alveolar GSH pools are in equilibrium. Alcohol-induced GSH depletion or oxidation was associated with impaired functions of alveolar type II cells and alveolar macrophages but could be reversed by restoring GSH pools in the alveolar lining fluid. The aims of this paper are to address the mechanisms for alcohol-induced GSH depletion and oxidation and the subsequent effects in alveolar barrier integrity, modulation of the immune response, and apoptosis.